Endomorphism algebras over large domains

Rüdiger Göbel; Simone Pabst

Fundamenta Mathematicae (1998)

  • Volume: 156, Issue: 3, page 211-240
  • ISSN: 0016-2736

Abstract

top
The paper deals with realizations of R-algebras A as endomorphism algebras End G ≅ A of suitable R-modules G over a commutative ring R. We are mainly interested in the case of R having "many prime ideals", such as R = ℝ[x], the ring of real polynomials, or R a non-discrete valuation domain

How to cite

top

Göbel, Rüdiger, and Pabst, Simone. "Endomorphism algebras over large domains." Fundamenta Mathematicae 156.3 (1998): 211-240. <http://eudml.org/doc/212270>.

@article{Göbel1998,
abstract = {The paper deals with realizations of R-algebras A as endomorphism algebras End G ≅ A of suitable R-modules G over a commutative ring R. We are mainly interested in the case of R having "many prime ideals", such as R = ℝ[x], the ring of real polynomials, or R a non-discrete valuation domain},
author = {Göbel, Rüdiger, Pabst, Simone},
journal = {Fundamenta Mathematicae},
keywords = {endomorphism algebras; realizations of algebras},
language = {eng},
number = {3},
pages = {211-240},
title = {Endomorphism algebras over large domains},
url = {http://eudml.org/doc/212270},
volume = {156},
year = {1998},
}

TY - JOUR
AU - Göbel, Rüdiger
AU - Pabst, Simone
TI - Endomorphism algebras over large domains
JO - Fundamenta Mathematicae
PY - 1998
VL - 156
IS - 3
SP - 211
EP - 240
AB - The paper deals with realizations of R-algebras A as endomorphism algebras End G ≅ A of suitable R-modules G over a commutative ring R. We are mainly interested in the case of R having "many prime ideals", such as R = ℝ[x], the ring of real polynomials, or R a non-discrete valuation domain
LA - eng
KW - endomorphism algebras; realizations of algebras
UR - http://eudml.org/doc/212270
ER -

References

top
  1. [1] C. Böttinger and R.Göbel, Modules with two distinguished submodules, in: Proc. 1991 Curaçao Conf. Abelian Groups, Lecture Notes in Pure and Appl. Math. 146, Marcel Dekker, New York, 1993, 97-104. Zbl0808.16030
  2. [2] C. C. Chang and H. J. Keisler, Model Theory, Stud. Logic Found. Math. 73, North-Holland, 1990. 
  3. [3] A. L. S. Corner and R. Göbel, Prescribing endomorphism algebras - A unified treatment, Proc. London Math. Soc. (3) 50 (1985), 447-479. Zbl0562.20030
  4. [4] M. Dugas and R. Göbel, Every cotorsion-free algebra is an endomorphism algebra, Math. Z. 181 (1982), 451-470. Zbl0501.16031
  5. [5] P. C. Eklof and A. H. Mekler, Almost Free Modules, North-Holland, 1990. Zbl0718.20027
  6. [6] L. Fuchs and L. Salce, Modules over Valuation Domains, Lecture Notes in Pure and Appl. Math. 97, Marcel Dekker, New York, 1985. Zbl0578.13004
  7. [7] R. Göbel and W. May, Independence in completions and endomorphism algebras, Forum Math. 1 (1989), 215-226. Zbl0691.13004
  8. [8] R. Göbel and S. Shelah, Modules over arbitrary domains II, Fund. Math. 126 (1986), 217-243. Zbl0615.16021
  9. [9] S. Pabst, Kaplansky's Testprobleme in der Modultheorie über kommutativen Ringen, Dissertation, Universität/GHS Essen, 1994. 
  10. [10] M. Prest, Model Theory and Modules, London Math. Soc. Lecture Note Ser. 130, Cambridge Univ. Press, 1988. 
  11. [11] R. B. Warfield, Purity and algebraic compactness for modules, Pacific J. Math. 28 (1969), 699-719. Zbl0172.04801
  12. [12] M. Ziegler, Model theory of modules, Ann. Pure Appl. Logic 26 (1984), 149-213. Zbl0593.16019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.