Hausdorff measures and two point set extensions
Jan Dijkstra; Kenneth Kunen; Jan van Mill
Fundamenta Mathematicae (1998)
- Volume: 157, Issue: 1, page 43-60
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topDijkstra, Jan, Kunen, Kenneth, and van Mill, Jan. "Hausdorff measures and two point set extensions." Fundamenta Mathematicae 157.1 (1998): 43-60. <http://eudml.org/doc/212277>.
@article{Dijkstra1998,
abstract = {We investigate the following question: under which conditions is a σ-compact partial two point set contained in a two point set? We show that no reasonable measure or capacity (when applied to the set itself) can provide a sufficient condition for a compact partial two point set to be extendable to a two point set. On the other hand, we prove that under Martin's Axiom any σ-compact partial two point set such that its square has Hausdorff 1-measure zero is extendable.},
author = {Dijkstra, Jan, Kunen, Kenneth, van Mill, Jan},
journal = {Fundamenta Mathematicae},
keywords = {two point set; partial two point set; extendable partial two point set; Hausdorff dimension zero; logarithmic capacity zero; Lebesgue measure zero},
language = {eng},
number = {1},
pages = {43-60},
title = {Hausdorff measures and two point set extensions},
url = {http://eudml.org/doc/212277},
volume = {157},
year = {1998},
}
TY - JOUR
AU - Dijkstra, Jan
AU - Kunen, Kenneth
AU - van Mill, Jan
TI - Hausdorff measures and two point set extensions
JO - Fundamenta Mathematicae
PY - 1998
VL - 157
IS - 1
SP - 43
EP - 60
AB - We investigate the following question: under which conditions is a σ-compact partial two point set contained in a two point set? We show that no reasonable measure or capacity (when applied to the set itself) can provide a sufficient condition for a compact partial two point set to be extendable to a two point set. On the other hand, we prove that under Martin's Axiom any σ-compact partial two point set such that its square has Hausdorff 1-measure zero is extendable.
LA - eng
KW - two point set; partial two point set; extendable partial two point set; Hausdorff dimension zero; logarithmic capacity zero; Lebesgue measure zero
UR - http://eudml.org/doc/212277
ER -
References
top- [1] J. J. Dijkstra, Generic partial two-point sets are extendable, Canad. Math. Bull., to appear. Zbl1002.54004
- [2] J. J. Dijkstra and J. van Mill, Two point set extensions - a counterexample, Proc. Amer. Math. Soc. 125 (1997), 2501-2502. Zbl0880.54022
- [3] J. Kulesza, A two-point set must be zero-dimensional, ibid. 116 (1992), 551-553. Zbl0765.54006
- [4] N. S. Landkof, Foundations of Modern Potential Theory, Grundlehren Math. Wiss. 180, Springer, Berlin, 1972. Zbl0253.31001
- [5] S. Lang, Algebra, 3rd ed., Addison-Wesley, Reading, 1993.
- [6] R. D. Mauldin, Problems in topology arising from analysis, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam, 1990, 617-629.
- [7] R. D. Mauldin, On sets which meet each line in exactly two points, Bull. London Math. Soc., to appear. Zbl0931.28001
- [8] S. Mazurkiewicz, O pewnej mnogości płaskiej, która ma każdą prostą dwa i tylko dwa punkty wspólne, C. R. Varsovie 7 (1914), 382-384 (in Polish); French transl.: Sur un ensemble plan qui a avec chaque droite deux et seulement deux points communs, in: Stefan Mazurkiewicz, Traveaux de Topologie et ses Applications, PWN, Warszawa, 1969, 46-47.
- [9] J. van Mill and G. M. Reed, Open problems in topology, Topology Appl. 62 (1995), 93-99. Zbl0811.54002
- [10] M. E. Rudin, Martin's Axiom, in: Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977, 491-501.
- [11] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987. Zbl0925.00005
- [12] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959. Zbl0087.28401
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.