Two point sets with additional properties

Marek Bienias; Szymon Głąb; Robert Rałowski; Szymon Żeberski

Czechoslovak Mathematical Journal (2013)

  • Volume: 63, Issue: 4, page 1019-1037
  • ISSN: 0011-4642

Abstract

top
A subset of the plane is called a two point set if it intersects any line in exactly two points. We give constructions of two point sets possessing some additional properties. Among these properties we consider: being a Hamel base, belonging to some σ -ideal, being (completely) nonmeasurable with respect to different σ -ideals, being a κ -covering. We also give examples of properties that are not satisfied by any two point set: being Luzin, Sierpiński and Bernstein set. We also consider natural generalizations of two point sets, namely: partial two point sets and n point sets for n = 3 , 4 , ... , 0 , 1 . We obtain consistent results connecting partial two point sets and some combinatorial properties (e.g. being an m.a.d. family).

How to cite

top

Bienias, Marek, et al. "Two point sets with additional properties." Czechoslovak Mathematical Journal 63.4 (2013): 1019-1037. <http://eudml.org/doc/260790>.

@article{Bienias2013,
abstract = {A subset of the plane is called a two point set if it intersects any line in exactly two points. We give constructions of two point sets possessing some additional properties. Among these properties we consider: being a Hamel base, belonging to some $\sigma $-ideal, being (completely) nonmeasurable with respect to different $\sigma $-ideals, being a $\kappa $-covering. We also give examples of properties that are not satisfied by any two point set: being Luzin, Sierpiński and Bernstein set. We also consider natural generalizations of two point sets, namely: partial two point sets and $n$ point sets for $n=3,4,\ldots , \aleph _0,$$\aleph _1.$ We obtain consistent results connecting partial two point sets and some combinatorial properties (e.g. being an m.a.d. family).},
author = {Bienias, Marek, Głąb, Szymon, Rałowski, Robert, Żeberski, Szymon},
journal = {Czechoslovak Mathematical Journal},
keywords = {two point set; partial two point set; complete nonmeasurability; Hamel basis; Marczewski measurable set; Marczewski null; $s$-nonmeasurability; Luzin set; Sierpiński set; two point set; partial two point set; complete nonmeasurability; Hamel basis; Marczewski measurable set; Marczewski null; -nonmeasurability; Luzin set; Sierpiński set},
language = {eng},
number = {4},
pages = {1019-1037},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two point sets with additional properties},
url = {http://eudml.org/doc/260790},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Bienias, Marek
AU - Głąb, Szymon
AU - Rałowski, Robert
AU - Żeberski, Szymon
TI - Two point sets with additional properties
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 4
SP - 1019
EP - 1037
AB - A subset of the plane is called a two point set if it intersects any line in exactly two points. We give constructions of two point sets possessing some additional properties. Among these properties we consider: being a Hamel base, belonging to some $\sigma $-ideal, being (completely) nonmeasurable with respect to different $\sigma $-ideals, being a $\kappa $-covering. We also give examples of properties that are not satisfied by any two point set: being Luzin, Sierpiński and Bernstein set. We also consider natural generalizations of two point sets, namely: partial two point sets and $n$ point sets for $n=3,4,\ldots , \aleph _0,$$\aleph _1.$ We obtain consistent results connecting partial two point sets and some combinatorial properties (e.g. being an m.a.d. family).
LA - eng
KW - two point set; partial two point set; complete nonmeasurability; Hamel basis; Marczewski measurable set; Marczewski null; $s$-nonmeasurability; Luzin set; Sierpiński set; two point set; partial two point set; complete nonmeasurability; Hamel basis; Marczewski measurable set; Marczewski null; -nonmeasurability; Luzin set; Sierpiński set
UR - http://eudml.org/doc/260790
ER -

References

top
  1. Bell, J. L., Slomson, A. B., Models and Ultraproducts. An Introduction, North-Holland Publishing Company, Amsterdam (1969). (1969) Zbl0179.31402MR0269486
  2. Carlson, T. J., 10.1090/S0002-9939-1993-1139474-6, Proc. Am. Math. Soc. 118 (1993), 577-586. (1993) Zbl0787.03037MR1139474DOI10.1090/S0002-9939-1993-1139474-6
  3. Cichoń, J., Morayne, M., Rałowski, R., Ryll-Nardzewski, C., Żeberski, S., 10.1016/j.topol.2006.09.013, Topology Appl. 154 (2007), 884-893. (2007) Zbl1109.03049MR2294636DOI10.1016/j.topol.2006.09.013
  4. Dijkstra, J. J., Kunen, K., Mill, J. van, Hausdorff measures and two point set extensions, Fundam. Math. 157 (1998), 43-60. (1998) MR1623614
  5. Dijkstra, J. J., Mill, J. van, 10.1090/S0002-9939-97-03875-6, Proc. Am. Math. Soc. 125 (1997), 2501-2502. (1997) MR1396973DOI10.1090/S0002-9939-97-03875-6
  6. Jech, T., Set Theory. The third millennium edition, revised and expanded, Springer Monographs in Mathematics Springer, Berlin (2003). (2003) Zbl1007.03002MR1940513
  7. Kraszewski, J., Rałowski, R., Szczepaniak, P., Żeberski, S., 10.1002/malq.200910008, Math. Log. Q. 56 (2010), 216-224. (2010) MR2650240DOI10.1002/malq.200910008
  8. Kunen, K., Set Theory. An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics vol. 102 North-Holland Publishing Company, Amsterdam (1980). (1980) Zbl0443.03021MR0597342
  9. Larman, D. D., 10.1112/jlms/s1-43.1.407, J. Lond. Math. Soc. 43 (1968), 407-409. (1968) Zbl0157.53702MR0231724DOI10.1112/jlms/s1-43.1.407
  10. Mauldin, R. D., 10.1112/S0024609397004268, Bull. Lond. Math. Soc. 30 (1998), 397-403. (1998) Zbl0931.28001MR1620829DOI10.1112/S0024609397004268
  11. Mazurkiewicz, S., O pewnej mnogości płaskiej, która ma z każdą prostą dwa i tylko dwa punkty wspólne, Polish Comptes Rendus des Séances de la Société des Sciences et Lettres de Varsovie 7 (1914), 382-384 French transl <title>Sur un ensemble plan qui a avec chaque droite deux et seulement deux points communs Stefan Mazurkiewicz, Traveaux de Topologie et ses Applications K. Borsuk et al. Wydawnictwo naukowe PWN, Warsaw, 1969, 46-47. (1914) MR0250248
  12. Miller, A. W., 10.1016/0168-0072(89)90013-4, Ann. Pure Appl. Logic 41 (1989), 179-203. (1989) Zbl0667.03037MR0983001DOI10.1016/0168-0072(89)90013-4
  13. Miller, A. W., Popvassiliev, S. G., Vitali sets and Hamel base that are Marczewski measurable, Fundam. Math. 166 (2000), 269-279. (2000) MR1809419
  14. Rałowski, R., 10.1002/malq.200810014, Math. Log. Q. 55 (2009), 659-665. (2009) Zbl1192.03025MR2582166DOI10.1002/malq.200810014
  15. Rałowski, R., Żeberski, S., 10.2478/s11533-010-0038-z, Cent. Eur. J. Math. 8 (2010), 683-687. (2010) Zbl1207.03056MR2671219DOI10.2478/s11533-010-0038-z
  16. Schmerl, J. H., 10.4064/fm208-1-6, Fundam. Math. 208 (2010), 87-91. (2010) Zbl1196.03057MR2609222DOI10.4064/fm208-1-6
  17. Szpilrajn, E., 10.4064/fm-24-1-17-34, Fundam. Math. 24 (1934), 17-34 French. (1934) DOI10.4064/fm-24-1-17-34
  18. Żeberski, S., 10.1002/malq.200610024, Math. Log. Q. 53 (2007), 38-42. (2007) Zbl1109.03046MR2288888DOI10.1002/malq.200610024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.