Two point sets with additional properties
Marek Bienias; Szymon Głąb; Robert Rałowski; Szymon Żeberski
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 4, page 1019-1037
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBienias, Marek, et al. "Two point sets with additional properties." Czechoslovak Mathematical Journal 63.4 (2013): 1019-1037. <http://eudml.org/doc/260790>.
@article{Bienias2013,
abstract = {A subset of the plane is called a two point set if it intersects any line in exactly two points. We give constructions of two point sets possessing some additional properties. Among these properties we consider: being a Hamel base, belonging to some $\sigma $-ideal, being (completely) nonmeasurable with respect to different $\sigma $-ideals, being a $\kappa $-covering. We also give examples of properties that are not satisfied by any two point set: being Luzin, Sierpiński and Bernstein set. We also consider natural generalizations of two point sets, namely: partial two point sets and $n$ point sets for $n=3,4,\ldots , \aleph _0,$$\aleph _1.$ We obtain consistent results connecting partial two point sets and some combinatorial properties (e.g. being an m.a.d. family).},
author = {Bienias, Marek, Głąb, Szymon, Rałowski, Robert, Żeberski, Szymon},
journal = {Czechoslovak Mathematical Journal},
keywords = {two point set; partial two point set; complete nonmeasurability; Hamel basis; Marczewski measurable set; Marczewski null; $s$-nonmeasurability; Luzin set; Sierpiński set; two point set; partial two point set; complete nonmeasurability; Hamel basis; Marczewski measurable set; Marczewski null; -nonmeasurability; Luzin set; Sierpiński set},
language = {eng},
number = {4},
pages = {1019-1037},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two point sets with additional properties},
url = {http://eudml.org/doc/260790},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Bienias, Marek
AU - Głąb, Szymon
AU - Rałowski, Robert
AU - Żeberski, Szymon
TI - Two point sets with additional properties
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 4
SP - 1019
EP - 1037
AB - A subset of the plane is called a two point set if it intersects any line in exactly two points. We give constructions of two point sets possessing some additional properties. Among these properties we consider: being a Hamel base, belonging to some $\sigma $-ideal, being (completely) nonmeasurable with respect to different $\sigma $-ideals, being a $\kappa $-covering. We also give examples of properties that are not satisfied by any two point set: being Luzin, Sierpiński and Bernstein set. We also consider natural generalizations of two point sets, namely: partial two point sets and $n$ point sets for $n=3,4,\ldots , \aleph _0,$$\aleph _1.$ We obtain consistent results connecting partial two point sets and some combinatorial properties (e.g. being an m.a.d. family).
LA - eng
KW - two point set; partial two point set; complete nonmeasurability; Hamel basis; Marczewski measurable set; Marczewski null; $s$-nonmeasurability; Luzin set; Sierpiński set; two point set; partial two point set; complete nonmeasurability; Hamel basis; Marczewski measurable set; Marczewski null; -nonmeasurability; Luzin set; Sierpiński set
UR - http://eudml.org/doc/260790
ER -
References
top- Bell, J. L., Slomson, A. B., Models and Ultraproducts. An Introduction, North-Holland Publishing Company, Amsterdam (1969). (1969) Zbl0179.31402MR0269486
- Carlson, T. J., 10.1090/S0002-9939-1993-1139474-6, Proc. Am. Math. Soc. 118 (1993), 577-586. (1993) Zbl0787.03037MR1139474DOI10.1090/S0002-9939-1993-1139474-6
- Cichoń, J., Morayne, M., Rałowski, R., Ryll-Nardzewski, C., Żeberski, S., 10.1016/j.topol.2006.09.013, Topology Appl. 154 (2007), 884-893. (2007) Zbl1109.03049MR2294636DOI10.1016/j.topol.2006.09.013
- Dijkstra, J. J., Kunen, K., Mill, J. van, Hausdorff measures and two point set extensions, Fundam. Math. 157 (1998), 43-60. (1998) MR1623614
- Dijkstra, J. J., Mill, J. van, 10.1090/S0002-9939-97-03875-6, Proc. Am. Math. Soc. 125 (1997), 2501-2502. (1997) MR1396973DOI10.1090/S0002-9939-97-03875-6
- Jech, T., Set Theory. The third millennium edition, revised and expanded, Springer Monographs in Mathematics Springer, Berlin (2003). (2003) Zbl1007.03002MR1940513
- Kraszewski, J., Rałowski, R., Szczepaniak, P., Żeberski, S., 10.1002/malq.200910008, Math. Log. Q. 56 (2010), 216-224. (2010) MR2650240DOI10.1002/malq.200910008
- Kunen, K., Set Theory. An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics vol. 102 North-Holland Publishing Company, Amsterdam (1980). (1980) Zbl0443.03021MR0597342
- Larman, D. D., 10.1112/jlms/s1-43.1.407, J. Lond. Math. Soc. 43 (1968), 407-409. (1968) Zbl0157.53702MR0231724DOI10.1112/jlms/s1-43.1.407
- Mauldin, R. D., 10.1112/S0024609397004268, Bull. Lond. Math. Soc. 30 (1998), 397-403. (1998) Zbl0931.28001MR1620829DOI10.1112/S0024609397004268
- Mazurkiewicz, S., O pewnej mnogości płaskiej, która ma z każdą prostą dwa i tylko dwa punkty wspólne, Polish Comptes Rendus des Séances de la Société des Sciences et Lettres de Varsovie 7 (1914), 382-384 French transl <title>Sur un ensemble plan qui a avec chaque droite deux et seulement deux points communs Stefan Mazurkiewicz, Traveaux de Topologie et ses Applications K. Borsuk et al. Wydawnictwo naukowe PWN, Warsaw, 1969, 46-47. (1914) MR0250248
- Miller, A. W., 10.1016/0168-0072(89)90013-4, Ann. Pure Appl. Logic 41 (1989), 179-203. (1989) Zbl0667.03037MR0983001DOI10.1016/0168-0072(89)90013-4
- Miller, A. W., Popvassiliev, S. G., Vitali sets and Hamel base that are Marczewski measurable, Fundam. Math. 166 (2000), 269-279. (2000) MR1809419
- Rałowski, R., 10.1002/malq.200810014, Math. Log. Q. 55 (2009), 659-665. (2009) Zbl1192.03025MR2582166DOI10.1002/malq.200810014
- Rałowski, R., Żeberski, S., 10.2478/s11533-010-0038-z, Cent. Eur. J. Math. 8 (2010), 683-687. (2010) Zbl1207.03056MR2671219DOI10.2478/s11533-010-0038-z
- Schmerl, J. H., 10.4064/fm208-1-6, Fundam. Math. 208 (2010), 87-91. (2010) Zbl1196.03057MR2609222DOI10.4064/fm208-1-6
- Szpilrajn, E., 10.4064/fm-24-1-17-34, Fundam. Math. 24 (1934), 17-34 French. (1934) DOI10.4064/fm-24-1-17-34
- Żeberski, S., 10.1002/malq.200610024, Math. Log. Q. 53 (2007), 38-42. (2007) Zbl1109.03046MR2288888DOI10.1002/malq.200610024
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.