On biaccessible points in Julia sets of polynomials
Fundamenta Mathematicae (2000)
- Volume: 163, Issue: 3, page 277-286
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topZdunik, Anna. "On biaccessible points in Julia sets of polynomials." Fundamenta Mathematicae 163.3 (2000): 277-286. <http://eudml.org/doc/212444>.
@article{Zdunik2000,
abstract = {Let f be a polynomial of one complex variable so that its Julia set is connected. We show that the harmonic (Brolin) measure of the set of biaccessible points in J is zero except for the case when J is an interval.},
author = {Zdunik, Anna},
journal = {Fundamenta Mathematicae},
keywords = {harmonic Brolin measure; Julia sets},
language = {eng},
number = {3},
pages = {277-286},
title = {On biaccessible points in Julia sets of polynomials},
url = {http://eudml.org/doc/212444},
volume = {163},
year = {2000},
}
TY - JOUR
AU - Zdunik, Anna
TI - On biaccessible points in Julia sets of polynomials
JO - Fundamenta Mathematicae
PY - 2000
VL - 163
IS - 3
SP - 277
EP - 286
AB - Let f be a polynomial of one complex variable so that its Julia set is connected. We show that the harmonic (Brolin) measure of the set of biaccessible points in J is zero except for the case when J is an interval.
LA - eng
KW - harmonic Brolin measure; Julia sets
UR - http://eudml.org/doc/212444
ER -
References
top- [DMNU] M. Denker, R. D. Mauldin, Z. Nitecki and M. Urbański, Conformal measures for rational functions revisited, Fund. Math. 157 (1998), 161-173. Zbl0915.58041
- [DU] M. Denker and M. Urbański, Ergodic theory of equillibrium states for rational maps, Nonlinearity 4 (1991), 103-134. Zbl0718.58035
- [DH] A. Douady et J. Hubbard, Etude dynamique des polynômes complexes (première partie), Publ. Math. d'Orsay, 84-02.
- [FKS] S. Fomin, I. Kornfeld and Ya. Sinai, Ergodic Theory, Springer, Berlin, 1982.
- [FLM] A. Freire, A. Lopes and R. Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), 45-62. Zbl0568.58027
- [Ja] M. Jakobson, On the classification of polynomial endomorphisms of the plane, Mat. Sb. 80 (1969), 365-387 (in Russian).
- [Ma] R. Mañé, On the Bernoulli property for rational maps, Ergodic Theory Dynam. Systems 5 (1985), 71-88. Zbl0605.28011
- [Po] C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, Berlin, 1992. Zbl0762.30001
- [P] F. Przytycki, Remarks on simple connectedness of basins of sinks for iterations of rational maps, in: Banach Center Publ. 23, PWN, 1989, 229-235. Zbl0703.58033
- [PUbook] F. Przytycki and M. Urbański, Fractals in the Plane-Ergodic Theory Methods, to appear; preliminary version at www.math.unt.edu/urbanski.
- [Th] W. Thurston, On the dynamics of iterated rational maps, preprint.
- [Za] S. Zakeri, Biaccessibility in quadratic Julia sets, I: the locally connected case, preprint SUNY, Stony Brook, 1998.
- [Z] A. Zdunik, Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Math. 99 (1990), 627-649. Zbl0820.58038
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.