On biaccessible points in Julia sets of polynomials

Anna Zdunik

Fundamenta Mathematicae (2000)

  • Volume: 163, Issue: 3, page 277-286
  • ISSN: 0016-2736

Abstract

top
Let f be a polynomial of one complex variable so that its Julia set is connected. We show that the harmonic (Brolin) measure of the set of biaccessible points in J is zero except for the case when J is an interval.

How to cite

top

Zdunik, Anna. "On biaccessible points in Julia sets of polynomials." Fundamenta Mathematicae 163.3 (2000): 277-286. <http://eudml.org/doc/212444>.

@article{Zdunik2000,
abstract = {Let f be a polynomial of one complex variable so that its Julia set is connected. We show that the harmonic (Brolin) measure of the set of biaccessible points in J is zero except for the case when J is an interval.},
author = {Zdunik, Anna},
journal = {Fundamenta Mathematicae},
keywords = {harmonic Brolin measure; Julia sets},
language = {eng},
number = {3},
pages = {277-286},
title = {On biaccessible points in Julia sets of polynomials},
url = {http://eudml.org/doc/212444},
volume = {163},
year = {2000},
}

TY - JOUR
AU - Zdunik, Anna
TI - On biaccessible points in Julia sets of polynomials
JO - Fundamenta Mathematicae
PY - 2000
VL - 163
IS - 3
SP - 277
EP - 286
AB - Let f be a polynomial of one complex variable so that its Julia set is connected. We show that the harmonic (Brolin) measure of the set of biaccessible points in J is zero except for the case when J is an interval.
LA - eng
KW - harmonic Brolin measure; Julia sets
UR - http://eudml.org/doc/212444
ER -

References

top
  1. [DMNU] M. Denker, R. D. Mauldin, Z. Nitecki and M. Urbański, Conformal measures for rational functions revisited, Fund. Math. 157 (1998), 161-173. Zbl0915.58041
  2. [DU] M. Denker and M. Urbański, Ergodic theory of equillibrium states for rational maps, Nonlinearity 4 (1991), 103-134. Zbl0718.58035
  3. [DH] A. Douady et J. Hubbard, Etude dynamique des polynômes complexes (première partie), Publ. Math. d'Orsay, 84-02. 
  4. [FKS] S. Fomin, I. Kornfeld and Ya. Sinai, Ergodic Theory, Springer, Berlin, 1982. 
  5. [FLM] A. Freire, A. Lopes and R. Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), 45-62. Zbl0568.58027
  6. [Ja] M. Jakobson, On the classification of polynomial endomorphisms of the plane, Mat. Sb. 80 (1969), 365-387 (in Russian). 
  7. [Ma] R. Mañé, On the Bernoulli property for rational maps, Ergodic Theory Dynam. Systems 5 (1985), 71-88. Zbl0605.28011
  8. [Po] C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, Berlin, 1992. Zbl0762.30001
  9. [P] F. Przytycki, Remarks on simple connectedness of basins of sinks for iterations of rational maps, in: Banach Center Publ. 23, PWN, 1989, 229-235. Zbl0703.58033
  10. [PUbook] F. Przytycki and M. Urbański, Fractals in the Plane-Ergodic Theory Methods, to appear; preliminary version at www.math.unt.edu/urbanski. 
  11. [Th] W. Thurston, On the dynamics of iterated rational maps, preprint. 
  12. [Za] S. Zakeri, Biaccessibility in quadratic Julia sets, I: the locally connected case, preprint SUNY, Stony Brook, 1998. 
  13. [Z] A. Zdunik, Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Math. 99 (1990), 627-649. Zbl0820.58038

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.