Decomposition of group-valued measures on orthoalgebras

Paolo De Lucia; Pedro Morales

Fundamenta Mathematicae (1998)

  • Volume: 158, Issue: 2, page 109-124
  • ISSN: 0016-2736

Abstract

top
We present a general decomposition theorem for a positive inner regular finitely additive measure on an orthoalgebra L with values in an ordered topological group G, not necessarily commutative. In the case where L is a Boolean algebra, we establish the uniqueness of such a decomposition. With mild extra hypotheses on G, we extend this Boolean decomposition, preserving the uniqueness, to the case where the measure is order bounded instead of being positive. This last result generalizes A. D. Aleksandrov's classical decomposition theorem.

How to cite

top

De Lucia, Paolo, and Morales, Pedro. "Decomposition of group-valued measures on orthoalgebras." Fundamenta Mathematicae 158.2 (1998): 109-124. <http://eudml.org/doc/212306>.

@article{DeLucia1998,
abstract = {We present a general decomposition theorem for a positive inner regular finitely additive measure on an orthoalgebra L with values in an ordered topological group G, not necessarily commutative. In the case where L is a Boolean algebra, we establish the uniqueness of such a decomposition. With mild extra hypotheses on G, we extend this Boolean decomposition, preserving the uniqueness, to the case where the measure is order bounded instead of being positive. This last result generalizes A. D. Aleksandrov's classical decomposition theorem.},
author = {De Lucia, Paolo, Morales, Pedro},
journal = {Fundamenta Mathematicae},
keywords = {group-valued measures; orthoalgebra; orthomodular posets; decomposition},
language = {eng},
number = {2},
pages = {109-124},
title = {Decomposition of group-valued measures on orthoalgebras},
url = {http://eudml.org/doc/212306},
volume = {158},
year = {1998},
}

TY - JOUR
AU - De Lucia, Paolo
AU - Morales, Pedro
TI - Decomposition of group-valued measures on orthoalgebras
JO - Fundamenta Mathematicae
PY - 1998
VL - 158
IS - 2
SP - 109
EP - 124
AB - We present a general decomposition theorem for a positive inner regular finitely additive measure on an orthoalgebra L with values in an ordered topological group G, not necessarily commutative. In the case where L is a Boolean algebra, we establish the uniqueness of such a decomposition. With mild extra hypotheses on G, we extend this Boolean decomposition, preserving the uniqueness, to the case where the measure is order bounded instead of being positive. This last result generalizes A. D. Aleksandrov's classical decomposition theorem.
LA - eng
KW - group-valued measures; orthoalgebra; orthomodular posets; decomposition
UR - http://eudml.org/doc/212306
ER -

References

top
  1. [1] A. D. Alexandroff [A. D. Aleksandrov], Additive set-functions in abstract spaces, Part 1, Mat. Sb. 8 (50) (1940), 307-348. Zbl66.0218.01
  2. [2] A. D. Alexandroff [A. D. Aleksandrov], Additive set-functions in abstract spaces, Part 2, ibid. 9 (51) (1941), 563-628. 
  3. [3] E. G. Beltrametti and G. Cassinelli, The Logic of Quantum Mechanics, Addison-Wesley, Reading, Mass., 1981. Zbl0491.03023
  4. [4] A. Bigard, K. Keimel et S. Wolfenstein, Groupes et anneaux réticulés, Lecture Notes in Math. 608, Springer, New York, 1977. Zbl0384.06022
  5. [5] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ. 25, 3rd ed., Providence, R.I., 1967. 
  6. [6] G. Birkhoff and J. von Neumann, The logic of quantum mechanics, Ann. of Math. 37 (1936), 823-843. Zbl0015.14603
  7. [7] P. De Lucia and P. Morales, Non-commutative version of the Alexandroff Decomposition Theorem in ordered topological groups, preprint no. 51, Univ. of Naples, 1993, 21 pp. 
  8. [8] A. Dvurečenskij, Gleason's Theorem and Its Applications, Kluwer, Dordrecht, 1993. 
  9. [9] A. Dvurečenskij and B. Riečan, Decomposition of measures on orthoalgebras and difference posets, Internat. J. Theoret. Phys. 33 (1994), 1387-1402. Zbl0815.03038
  10. [10] D. Feldman and A. Wilce, σ-Additivity in manuals and orthoalgebras, Order 10 (1993), 383-392. 
  11. [11] D. J. Foulis and M. K. Bennett, Tensor product of orthoalgebras, ibid., 271-282. Zbl0798.06015
  12. [12] D. J. Foulis, R. J. Greechie and G. T. Rüttimann, Filters and supports in orthalgebras, Internat. J. Theoret. Phys. 31 (1992), 789-807. Zbl0764.03026
  13. [13] F. Garcia-Mazario, Ordered topological group-valued measures on orthoalgebras, doctoral dissertation, UNED, 1995 (in Spanish). 
  14. [14] E. D. Habil, Brooks-Jewett and Nikodym convergence theorems for orthoalgebras that have the weak subsequential property, Internat. J. Theoret. Phys. 34 (1995), 465-491. Zbl0822.60004
  15. [15] G. Jameson, Ordered Linear Spaces, Lecture Notes in Math. 141, Springer, New York, 1970. Zbl0196.13401
  16. [16] G. Kalmbach, Orthomodular Lattices, Academic Press, London, 1983. 
  17. [17] J. Kelley, General Topology, Grad. Texts in Math. 27, Springer, New York, 1985. 
  18. [18] G. W. Mackey, The Mathematical Foundations of Quantum Mechanics, Benjamin, New York, 1963. Zbl0114.44002
  19. [19] S. Maeda, Probability measures on projections in von Neumann algebras, Rev. Math. Phys. 1 (1990), 235-290. Zbl0718.46046
  20. [20] P. Morales and F. Garcia-Mazario, The support of a measure in ordered topological groups, Atti Sem. Mat. Fis. Univ. Modena 45 (1997), 179-221. Zbl0889.28008
  21. [21] G. T. Rüttimann, Non-commutative measure theory, Habilitationsschrift, Universität Bern, 1980. 
  22. [22] G. T. Rüttimann, The approximate Jordan-Hahn decomposition, Canad. J. Math. 41 (1989), 1124-1146. Zbl0699.28001
  23. [23] K. Sundaresan and P. W. Day, Regularity of group valued Baire and Borel measures, Proc. Amer. Math. Soc. 36 (1972), 609-612. Zbl0263.28009
  24. [24] V. S. Varadarajan, Geometry of Quantum Theory, 2nd ed., Springer, Berlin, 1985. Zbl0581.46061
  25. [25] K. Yosida and E. Hewitt, Finitely additive measures, Trans. Amer. Math. Soc. 72 (1952), 46-66. Zbl0046.05401

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.