Decomposition of group-valued measures on orthoalgebras
Fundamenta Mathematicae (1998)
- Volume: 158, Issue: 2, page 109-124
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. D. Alexandroff [A. D. Aleksandrov], Additive set-functions in abstract spaces, Part 1, Mat. Sb. 8 (50) (1940), 307-348. Zbl66.0218.01
- [2] A. D. Alexandroff [A. D. Aleksandrov], Additive set-functions in abstract spaces, Part 2, ibid. 9 (51) (1941), 563-628.
- [3] E. G. Beltrametti and G. Cassinelli, The Logic of Quantum Mechanics, Addison-Wesley, Reading, Mass., 1981. Zbl0491.03023
- [4] A. Bigard, K. Keimel et S. Wolfenstein, Groupes et anneaux réticulés, Lecture Notes in Math. 608, Springer, New York, 1977. Zbl0384.06022
- [5] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ. 25, 3rd ed., Providence, R.I., 1967.
- [6] G. Birkhoff and J. von Neumann, The logic of quantum mechanics, Ann. of Math. 37 (1936), 823-843. Zbl0015.14603
- [7] P. De Lucia and P. Morales, Non-commutative version of the Alexandroff Decomposition Theorem in ordered topological groups, preprint no. 51, Univ. of Naples, 1993, 21 pp.
- [8] A. Dvurečenskij, Gleason's Theorem and Its Applications, Kluwer, Dordrecht, 1993.
- [9] A. Dvurečenskij and B. Riečan, Decomposition of measures on orthoalgebras and difference posets, Internat. J. Theoret. Phys. 33 (1994), 1387-1402. Zbl0815.03038
- [10] D. Feldman and A. Wilce, σ-Additivity in manuals and orthoalgebras, Order 10 (1993), 383-392.
- [11] D. J. Foulis and M. K. Bennett, Tensor product of orthoalgebras, ibid., 271-282. Zbl0798.06015
- [12] D. J. Foulis, R. J. Greechie and G. T. Rüttimann, Filters and supports in orthalgebras, Internat. J. Theoret. Phys. 31 (1992), 789-807. Zbl0764.03026
- [13] F. Garcia-Mazario, Ordered topological group-valued measures on orthoalgebras, doctoral dissertation, UNED, 1995 (in Spanish).
- [14] E. D. Habil, Brooks-Jewett and Nikodym convergence theorems for orthoalgebras that have the weak subsequential property, Internat. J. Theoret. Phys. 34 (1995), 465-491. Zbl0822.60004
- [15] G. Jameson, Ordered Linear Spaces, Lecture Notes in Math. 141, Springer, New York, 1970. Zbl0196.13401
- [16] G. Kalmbach, Orthomodular Lattices, Academic Press, London, 1983.
- [17] J. Kelley, General Topology, Grad. Texts in Math. 27, Springer, New York, 1985.
- [18] G. W. Mackey, The Mathematical Foundations of Quantum Mechanics, Benjamin, New York, 1963. Zbl0114.44002
- [19] S. Maeda, Probability measures on projections in von Neumann algebras, Rev. Math. Phys. 1 (1990), 235-290. Zbl0718.46046
- [20] P. Morales and F. Garcia-Mazario, The support of a measure in ordered topological groups, Atti Sem. Mat. Fis. Univ. Modena 45 (1997), 179-221. Zbl0889.28008
- [21] G. T. Rüttimann, Non-commutative measure theory, Habilitationsschrift, Universität Bern, 1980.
- [22] G. T. Rüttimann, The approximate Jordan-Hahn decomposition, Canad. J. Math. 41 (1989), 1124-1146. Zbl0699.28001
- [23] K. Sundaresan and P. W. Day, Regularity of group valued Baire and Borel measures, Proc. Amer. Math. Soc. 36 (1972), 609-612. Zbl0263.28009
- [24] V. S. Varadarajan, Geometry of Quantum Theory, 2nd ed., Springer, Berlin, 1985. Zbl0581.46061
- [25] K. Yosida and E. Hewitt, Finitely additive measures, Trans. Amer. Math. Soc. 72 (1952), 46-66. Zbl0046.05401