Hopfian and strongly hopfian manifolds

Young Im; Yongkuk Kim

Fundamenta Mathematicae (1999)

  • Volume: 159, Issue: 2, page 127-134
  • ISSN: 0016-2736

Abstract

top
Let p: M → B be a proper surjective map defined on an (n+2)-manifold such that each point-preimage is a copy of a hopfian n-manifold. Then we show that p is an approximate fibration over some dense open subset O of the mod 2 continuity set C’ and C’ ∖ O is locally finite. As an application, we show that a hopfian n-manifold N is a codimension-2 fibrator if χ(N) ≠ 0 or H 1 ( N ) 2

How to cite

top

Im, Young, and Kim, Yongkuk. "Hopfian and strongly hopfian manifolds." Fundamenta Mathematicae 159.2 (1999): 127-134. <http://eudml.org/doc/212324>.

@article{Im1999,
abstract = {Let p: M → B be a proper surjective map defined on an (n+2)-manifold such that each point-preimage is a copy of a hopfian n-manifold. Then we show that p is an approximate fibration over some dense open subset O of the mod 2 continuity set C’ and C’ ∖ O is locally finite. As an application, we show that a hopfian n-manifold N is a codimension-2 fibrator if χ(N) ≠ 0 or $H_1(N) ≅ ℤ_2$},
author = {Im, Young, Kim, Yongkuk},
journal = {Fundamenta Mathematicae},
keywords = {strongly Hopfian manifold; approximate fibration; mod 2 continuity set; codimension-2 fibrator; Hopfian group; hyper-Hopfian group; residually finite group; proper map},
language = {eng},
number = {2},
pages = {127-134},
title = {Hopfian and strongly hopfian manifolds},
url = {http://eudml.org/doc/212324},
volume = {159},
year = {1999},
}

TY - JOUR
AU - Im, Young
AU - Kim, Yongkuk
TI - Hopfian and strongly hopfian manifolds
JO - Fundamenta Mathematicae
PY - 1999
VL - 159
IS - 2
SP - 127
EP - 134
AB - Let p: M → B be a proper surjective map defined on an (n+2)-manifold such that each point-preimage is a copy of a hopfian n-manifold. Then we show that p is an approximate fibration over some dense open subset O of the mod 2 continuity set C’ and C’ ∖ O is locally finite. As an application, we show that a hopfian n-manifold N is a codimension-2 fibrator if χ(N) ≠ 0 or $H_1(N) ≅ ℤ_2$
LA - eng
KW - strongly Hopfian manifold; approximate fibration; mod 2 continuity set; codimension-2 fibrator; Hopfian group; hyper-Hopfian group; residually finite group; proper map
UR - http://eudml.org/doc/212324
ER -

References

top
  1. [1] G. Baumslag and D. Solitar, Some two-generator and one relator non-hopfian groups, Bull. Amer. Math. Soc. 68 (1962), 199-201. Zbl0108.02702
  2. [2] N. Chinen, Manifolds with nonzero Euler characteristic and codimension-2 fibrators, Topology Appl. 86 (1998), 151-167. Zbl0930.57020
  3. [3] N. Chinen, Finite groups and approximate fibrations, ibid., to appear. 
  4. [4] D. S. Coram and P. F. Duvall, Approximate fibrations, Rocky Mountain J. Math. 7 (1977), 275-288. Zbl0367.55019
  5. [5] D. S. Coram and P. F. Duvall, Approximate fibrations and a movability condition for maps, Pacific J. Math. 72 (1977), 41-56. Zbl0368.55016
  6. [6] D. S. Coram and P. F. Duvall, Mappings from S 3 to S 2 whose point inverses have the shape of a circle, Gen. Topology Appl. 10 (1979), 239-246. Zbl0417.54014
  7. [7] R. J. Daverman, Submanifold decompositions that induce approximate fibrations, Topology Appl. 33 (1989), 173-184. Zbl0684.57009
  8. [8] R. J. Daverman, Hyperhopfian groups and approximate fibrations, Compositio Math. 86 (1993), 159-176. Zbl0788.57012
  9. [9] R. J. Daverman, Codimension-2 fibrators with finite fundamental groups, Proc. Amer. Math. Soc., to appear. Zbl0913.55004
  10. [10] R. J. Daverman, 3-manifolds with geometric structure and approximate fibrations, Indiana Univ. Math. J. 40 (1991), 1451-1469. Zbl0739.57007
  11. [11] J. C. Hausmann, Geometric Hopfian and non-Hopfian situations, in: Lecture Notes in Pure and Appl. Math. 105, Marcel Dekker, New York, 1987, 157-166. 
  12. [12] J. C. Hausmann, Fundamental group problems related to Poincaré duality, in: CMS Conf. Proc. 2, Amer. Math. Soc., Providence, R.I., 1982, 327-336. Zbl0555.57005
  13. [13] J. Hempel, 3-manifolds, Ann. of Math. Stud. 86, Princeton Univ. Press, Princeton, N.J., 1976. 
  14. [14] R. Hirshon, Some results on direct sum of hopfian groups, Ph.D. Dissertation, Adelphi Univ., 1967. 
  15. [15] Y. H. Im, Products of surfaces that induce approximate fibrations, Houston J. Math. 21 (1995), 339-348. Zbl0841.57031
  16. [16] Y. Kim, Strongly hopfian manifolds as codimension-2 fibrators, Topology Appl., to appear. Zbl0930.57021
  17. [17] Y. Kim, Manifolds with hyperhopfian fundamental group as codimension-2 fibrators, ibid., to appear. Zbl0947.57025
  18. [18] A. N. Parshin and I. R. Shafarevich, Algebra VII, Encyclopaedia Math. Sci. 58, Springer, 1993. 
  19. [19] J. Roitberg, Residually finite, hopfian and co-hopfian spaces, in: Contemp. Math. 37, Amer. Math. Soc., 1985, 131-144. Zbl0562.55008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.