Hyperhopfian groups and approximate fibrations

R. J. Daverman

Compositio Mathematica (1993)

  • Volume: 86, Issue: 2, page 159-176
  • ISSN: 0010-437X

How to cite

top

Daverman, R. J.. "Hyperhopfian groups and approximate fibrations." Compositio Mathematica 86.2 (1993): 159-176. <http://eudml.org/doc/90215>.

@article{Daverman1993,
author = {Daverman, R. J.},
journal = {Compositio Mathematica},
keywords = {shape equivalent to a manifold; manifold; approximate fibration; decomposition; codimension -fibrator; Hopfian manifolds; closed Hopfian manifolds with hyper-Hopfian fundamental group; codimension 2- fibrator},
language = {eng},
number = {2},
pages = {159-176},
publisher = {Kluwer Academic Publishers},
title = {Hyperhopfian groups and approximate fibrations},
url = {http://eudml.org/doc/90215},
volume = {86},
year = {1993},
}

TY - JOUR
AU - Daverman, R. J.
TI - Hyperhopfian groups and approximate fibrations
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 86
IS - 2
SP - 159
EP - 176
LA - eng
KW - shape equivalent to a manifold; manifold; approximate fibration; decomposition; codimension -fibrator; Hopfian manifolds; closed Hopfian manifolds with hyper-Hopfian fundamental group; codimension 2- fibrator
UR - http://eudml.org/doc/90215
ER -

References

top
  1. [C-D1] D.S. Coram and P.F. Duvall, Approximate fibrations, Rocky Mtn. J. Math.7 (1977), 275-288. Zbl0367.55019MR442921
  2. [C-D2] D.S. Coram and P.F. Duvall, Approximate fibrations and a movability condition for maps, Pacific J. Math.72 (1977), 41-56. Zbl0368.55016MR467745
  3. [D1] R.J. Daverman, Submanifold decompositions that induce approximate fibrations, Topology Appl.33 (1989), 173-184. Zbl0684.57009MR1020279
  4. [D2] R.J. Daverman, Manifolds with finite first homology as codimension 2 fibrators, Proc. Amer. Math. Soc.113 (1991), 471-477. Zbl0727.55009MR1086581
  5. [D3] R.J. Daverman, 3-Manifolds with geometric structures and approximate fibrations, Indiana Univ. Math. J.40 (1991), 1451-1469. Zbl0739.57007MR1142723
  6. [D-W] R.J. Daverman and J.J. Walsh, Decompositions into codimension two manifolds, Trans. Amer. Math. Soc.288 (1985), 273-291. Zbl0568.57013MR773061
  7. [G] K.W. Gruenberg, Residual properties of infinite solvable groups, Proc. London Math. Soc. (3) 7 (1957), 29-62. Zbl0077.02901MR87652
  8. [Ha] J.C. Hausmann, Geometric Hopfian and non-Hopfian situations, in Geometry and Topology (C. McCrory and T. Shiflin, eds.) Lecture Notes in Pure Appl. Math., Marcel Dekker, Inc., New York, 1987, 157-166. Zbl0607.57015MR873292
  9. [He] J. Hempel, Residual finiteness for 3-manifolds, in Combinatorial Group Theory and Topology (S. M. Gersten and J. R. Stallings, eds.), Annals of Math. Studies, No. 111, Princeton Univ. Press, Princeton, NJ, 1987, 379-396. Zbl0772.57002MR895623
  10. [I] Y.H. Im, Submanifold decompositions that induce approximate fibrations and approximation by bundle maps, Ph.D. Dissertation, University of Tennessee, Knoxville, 1991. 
  11. [L] R. Lee, Semicharacteristic classes, Topology12 (1973), 183-199. Zbl0264.57012MR362367
  12. [Mi1] J. Milnor, Groups which act on Sn without fixed points, Amer. J. Math.79 (1957), 623-630. Zbl0078.16304MR90056
  13. [M2i] J. Milnor, Infinite cyclic coverings, in Conference on the Topology of Manifolds (J. G. Hocking, ed.), Prindle Weber & Schmidt, Inc., Boston, 1968, 115-133. Zbl0179.52302MR242163
  14. [Mu] J.R. Munkres, Elements of Algebraic Topology, Addison Wesley Publ. Co., New York, 1984. Zbl0673.55001MR755006
  15. [S-W] P. Scott and T. Wall, Topological methods in group theory, in Homological Group Theory (C. T. C. Wall, ed.), Cambridge Univ. Press, Cambridge, 1979, 137-203. Zbl0423.20023MR564422
  16. [S] E.H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966. Zbl0145.43303MR210112
  17. [S1] G.A. Swarup, On embedded spheres in 3-manifolds, Math. Ann.203 (1973), 89-102. Zbl0241.55017MR328910
  18. [S2] G.A. Swarup, On a theorem of C. B. Thomas, J. London Math. Soc. (2) 8 (1974), 13-21. Zbl0281.57003MR341474
  19. [W] F. Waldhausen, Algebraic K-theory of generalized free products, Ann. of Math.108 (1978), 135-256. Zbl0407.18009MR498807

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.