Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval
Sergiĭ Kolyada; Michał Misiurewicz; L’ubomír Snoha
Fundamenta Mathematicae (1999)
- Volume: 160, Issue: 2, page 161-181
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topKolyada, Sergiĭ, Misiurewicz, Michał, and Snoha, L’ubomír. "Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval." Fundamenta Mathematicae 160.2 (1999): 161-181. <http://eudml.org/doc/212386>.
@article{Kolyada1999,
abstract = {The topological entropy of a nonautonomous dynamical system given by a sequence of compact metric spaces $(X_i)^∞_\{i = 1\}$ and a sequence of continuous maps $(f_i)^∞_\{i = 1\}$, $f_i : X_i → X_\{i+1\}$, is defined. If all the spaces are compact real intervals and all the maps are piecewise monotone then, under some additional assumptions, a formula for the entropy of the system is obtained in terms of the number of pieces of monotonicity of $f_n ○... ○ f_2 ○ f_1$. As an application we construct a large class of smooth triangular maps of the square of type $2^∞$ and positive topological entropy.},
author = {Kolyada, Sergiĭ, Misiurewicz, Michał, Snoha, L’ubomír},
journal = {Fundamenta Mathematicae},
keywords = {nonautonomous dynamical system; topological entropy; triangular maps; piecewise monotone maps; $C^∞$ maps; nonautonomous systems; discrete dynamical system; piecewise monotone dynamical systems},
language = {eng},
number = {2},
pages = {161-181},
title = {Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval},
url = {http://eudml.org/doc/212386},
volume = {160},
year = {1999},
}
TY - JOUR
AU - Kolyada, Sergiĭ
AU - Misiurewicz, Michał
AU - Snoha, L’ubomír
TI - Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval
JO - Fundamenta Mathematicae
PY - 1999
VL - 160
IS - 2
SP - 161
EP - 181
AB - The topological entropy of a nonautonomous dynamical system given by a sequence of compact metric spaces $(X_i)^∞_{i = 1}$ and a sequence of continuous maps $(f_i)^∞_{i = 1}$, $f_i : X_i → X_{i+1}$, is defined. If all the spaces are compact real intervals and all the maps are piecewise monotone then, under some additional assumptions, a formula for the entropy of the system is obtained in terms of the number of pieces of monotonicity of $f_n ○... ○ f_2 ○ f_1$. As an application we construct a large class of smooth triangular maps of the square of type $2^∞$ and positive topological entropy.
LA - eng
KW - nonautonomous dynamical system; topological entropy; triangular maps; piecewise monotone maps; $C^∞$ maps; nonautonomous systems; discrete dynamical system; piecewise monotone dynamical systems
UR - http://eudml.org/doc/212386
ER -
References
top- [AKM] R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. Zbl0127.13102
- [ALM] L. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, World Sci., Singapore, 1993. Zbl0843.58034
- [BEL] F. Balibrea, F. Esquembre and A. Linero, Smooth triangular maps of type with positive topological entropy, Internat. J. Bifur. Chaos 5 (1995), 1319-1324. Zbl0886.58044
- [BC] L. S. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Math. 1513, Springer, Berlin, 1992.
- [B] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414. Zbl0212.29201
- [CE] P. Collet and J.-P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Progr. in Phys. 1, Birkhäuser, Boston, 1980.
- [D] E. I. Dinaburg, Connection between various entropy characterizations of dynamical systems, Izv. Akad. Nauk SSSR 35 (1971), 324-366 (in Russian).
- [G] M. Gromov, Entropy, homology and semialgebraic geometry (after Y. Yomdin), Astérisque (Séminaire Bourbaki, 1985-86, no. 663) 145-146 (1987), 225-240.
- [Ka] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. IHES 51 (1980), 137-174. Zbl0445.58015
- [Kl] P. E. Kloeden, On Sharkovsky's cycle coexistence ordering, Bull. Austral. Math. Soc. 20 (1979), 171-177. Zbl0465.58022
- [Ko] S. F. Kolyada, On dynamics of triangular maps of the square, Ergodic Theory Dynam. Systems 12 (1992), 749-768. Zbl0784.58038
- [KS] S. Kolyada and L'. Snoha, Topological entropy of nonautonomous dynamical systems, Random Comput. Dynam. 4 (1996), 205-233. Zbl0909.54012
- [dMvS] W. de Melo and S. van Strien, One-Dimensional Dynamics, Series of Modern Surveys in Math., Springer, Berlin, 1993. Zbl0791.58003
- [M] M. Misiurewicz, Attracting set of positive measure for a map of an interval, Ergodic Theory Dynam. Systems 2 (1982), 405-415. Zbl0522.58032
- [MS] M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math. 67 (1980), 45-63. Zbl0445.54007
- [Y] Y. Yomdin, Volume growth and entropy, Israel J. Math. 57 (1987), 285-300.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.