Metric Entropy of Nonautonomous Dynamical Systems

Christoph Kawan

Nonautonomous Dynamical Systems (2014)

  • Volume: 1, page 26-52, electronic only
  • ISSN: 2353-0626

Abstract

top
We introduce the notion of metric entropy for a nonautonomous dynamical system given by a sequence (Xn, μn) of probability spaces and a sequence of measurable maps fn : Xn → Xn+1 with fnμn = μn+1. This notion generalizes the classical concept of metric entropy established by Kolmogorov and Sinai, and is related via a variational inequality to the topological entropy of nonautonomous systems as defined by Kolyada, Misiurewicz, and Snoha. Moreover, it shares several properties with the classical notion of metric entropy. In particular, invariance with respect to appropriately defined isomorphisms, a power rule, and a Rokhlin-type inequality are proved.

How to cite

top

Christoph Kawan. "Metric Entropy of Nonautonomous Dynamical Systems." Nonautonomous Dynamical Systems 1 (2014): 26-52, electronic only. <http://eudml.org/doc/266895>.

@article{ChristophKawan2014,
abstract = {We introduce the notion of metric entropy for a nonautonomous dynamical system given by a sequence (Xn, μn) of probability spaces and a sequence of measurable maps fn : Xn → Xn+1 with fnμn = μn+1. This notion generalizes the classical concept of metric entropy established by Kolmogorov and Sinai, and is related via a variational inequality to the topological entropy of nonautonomous systems as defined by Kolyada, Misiurewicz, and Snoha. Moreover, it shares several properties with the classical notion of metric entropy. In particular, invariance with respect to appropriately defined isomorphisms, a power rule, and a Rokhlin-type inequality are proved.},
author = {Christoph Kawan},
journal = {Nonautonomous Dynamical Systems},
keywords = {Nonautonomous dynamical systems; topological entropy; metric entropy; variational principle; nonautonomous dynamical system},
language = {eng},
pages = {26-52, electronic only},
title = {Metric Entropy of Nonautonomous Dynamical Systems},
url = {http://eudml.org/doc/266895},
volume = {1},
year = {2014},
}

TY - JOUR
AU - Christoph Kawan
TI - Metric Entropy of Nonautonomous Dynamical Systems
JO - Nonautonomous Dynamical Systems
PY - 2014
VL - 1
SP - 26
EP - 52, electronic only
AB - We introduce the notion of metric entropy for a nonautonomous dynamical system given by a sequence (Xn, μn) of probability spaces and a sequence of measurable maps fn : Xn → Xn+1 with fnμn = μn+1. This notion generalizes the classical concept of metric entropy established by Kolmogorov and Sinai, and is related via a variational inequality to the topological entropy of nonautonomous systems as defined by Kolyada, Misiurewicz, and Snoha. Moreover, it shares several properties with the classical notion of metric entropy. In particular, invariance with respect to appropriately defined isomorphisms, a power rule, and a Rokhlin-type inequality are proved.
LA - eng
KW - Nonautonomous dynamical systems; topological entropy; metric entropy; variational principle; nonautonomous dynamical system
UR - http://eudml.org/doc/266895
ER -

References

top
  1. [1] R. L. Adler, A. G. Konheim, M. H. McAndrew, Topological entropy. Trans. Am. Math. Soc. 114 (1965), 309–319. [WoS][Crossref] Zbl0127.13102
  2. [2] F. Balibrea, V. Jiménez López, J. S. Cánovas, Some results on entropy and sequence entropy. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), no. 9, 1731–1742. [Crossref] Zbl1089.37501
  3. [3] T. Bogenschütz, Entropy, pressure, and a variational principle for random dynamical systems. Random Comput. Dynam. 1 (1992/93), no. 1, 99–116. 
  4. [4] R. Bowen, Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 153 (1971), 401–414. [Crossref] Zbl0212.29201
  5. [5] J. S. Cánovas, Some results on (X; f; A) nonautonomous systems. Iteration theory (ECIT ’02), 53–60, Grazer Math. Ber., 346, Karl-Franzens-Univ. Graz, Graz, 2004. Zbl1065.37016
  6. [6] R.-A. Dana, L. Montrucchio, Dynamic complexity in duopoly games. J. Economic Theory 44 (1986), 44–56. Zbl0617.90104
  7. [7] G. Froyland, O. Stancevic, Metastability, Lyapunov exponents, escape rates, and topological entropy in random dynamical systems. arXiv:1106.1954v4 [math.DS], 2011/12. 
  8. [8] T. N. T. Goodman, Topological sequence entropy. Proc. London Math. Soc. (3) 29 (1974), 331–350. Zbl0293.54043
  9. [9] X. Huang, X. Wen, F. Zeng, Topological pressure of nonautonomous dynamical systems. Nonlinear Dyn. Syst. Theory 8 (2008), no. 1, 43–48. Zbl1300.37007
  10. [10] X. Huang, X. Wen, F. Zeng, Pre-image entropy of nonautonomous dynamical systems. J. Syst. Sci. Complex. 21 (2008), no. 3, 441–445. [Crossref][WoS] Zbl1175.37025
  11. [11] A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1995. Zbl0878.58020
  12. [12] A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces. Dokl. Akad. Nauk SSSR (N.S.) 119 (1958), 861–864. Zbl0083.10602
  13. [13] S. Kolyada, L. Snoha, Topological entropy of nonautonomous dynamical systems. Random Comput. Dynamics 4 (1996), no. 2–3, 205–233. Zbl0909.54012
  14. [14] S. Kolyada, M. Misiurewicz, L. Snoha, Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval. Fund. Math. 160 (1999), no. 2, 161–181. Zbl0936.37004
  15. [15] K. Krzyzewski, W. Szlenk, On invariant measures for expanding differentiable mappings. Studia Math. 33 (1969), 83–92. Zbl0176.00901
  16. [16] A. G. Kushnirenko, On metric invariants of entropy type. Russ. Math. Surv. 22 (1967), no. 5, 53–61; translation from Usp. Mat. Nauk 22, no. 5 (137) (1967), 57–65. [Crossref] Zbl0169.46101
  17. [17] P.–D. Liu, Entropy formula of Pesin type for noninvertible random dynamical systems. Math. Z. 230 (1999), no. 2, 201–239. Zbl0955.37028
  18. [18] P.–D. Liu, M. Qian, Smooth Ergodic Theory of Random Dynamical Systems, Lecture Notes in Mathematics, 1606. Springer-Verlag, Berlin, 1995. Zbl0841.58041
  19. [19] M. Misiurewicz, Topological entropy and metric entropy. Ergodic theory (Sem., Les Plans-sur-Bex, 1980) (French), 61–66, Monograph. Enseign. Math. 29, Univ. Genéve, Geneva (1981). 
  20. [20] C. Mouron, Positive entropy on nonautonomous interval maps and the topology of the inverse limit space. Topology Appl. 154 (2007), no. 4, 894–907. [Crossref][WoS] Zbl1117.37011
  21. [21] P. Oprocha, P. Wilczynski, Chaos in nonautonomous dynamical systems. An. Stiint. Univ. “Ovidius” Constanta Ser. Mat. 17 (2009), no. 3, 209–221. Zbl1199.37021
  22. [22] P. Oprocha, P. Wilczynski, Topological entropy for local processes. J. Differential Equations 249 (2010), no. 8, 1929–1967. [WoS] Zbl1209.37015
  23. [23] W. Ott, M. Stendlund, L.–S. Young, Memory loss for time-dependent dynamical systems. Math. Res. Lett. 16 (2009), no. 3, 463–475. [Crossref] Zbl1177.37055
  24. [24] A. Y. Pogromsky, A. S. Matveev, Estimation of topological entropy via the direct Lyapunov method. Nonlinearity 24 (2011), no. 7, 1937–1959. [Crossref][WoS] 
  25. [25] Ja. Sinai, On the concept of entropy for a dynamic system. Dokl. Akad. Nauk SSSR 124 (1959), 768–771. Zbl0086.10102
  26. [26] J. Zhang, L. Chen, Lower bounds of the topological entropy for nonautonomous dynamical systems. Appl. Math. J. Chinese Univ. Ser. B 24 (2009), no. 1, 76–82. [WoS][Crossref] Zbl1199.37009
  27. [27] Y. Zhao, The relation of dimension, entropy and Lyapunov exponent in random case. Anal. Theory Appl. 24 (2008), no. 2, 129–138. [Crossref] Zbl1174.37004
  28. [28] Y. Zhu, Z. Liu, X. Xu and W. Zhang, Entropy of nonautonomous dynamical systems. J. Korean Math. Soc. 49 (2012), no. 1, 165–185. [Crossref] Zbl1252.37009
  29. [29] Y. Zhu, J. Zhang, L. He, Topological entropy of a sequence of monotone maps on circles. Korean Math. Soc. 43 (2006), no. 2, 373–382. Zbl1098.37038

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.