Subcontinua of inverse limit spaces of unimodal maps

Karen Brucks; Henk Bruin

Fundamenta Mathematicae (1999)

  • Volume: 160, Issue: 3, page 219-246
  • ISSN: 0016-2736

Abstract

top
We discuss the inverse limit spaces of unimodal interval maps as topological spaces. Based on the combinatorial properties of the unimodal maps, properties of the subcontinua of the inverse limit spaces are studied. Among other results, we give combinatorial conditions for an inverse limit space to have only arc+ray subcontinua as proper (non-trivial) subcontinua. Also, maps are constructed whose inverse limit spaces have the inverse limit spaces of a prescribed set of periodic unimodal maps as subcontinua.

How to cite

top

Brucks, Karen, and Bruin, Henk. "Subcontinua of inverse limit spaces of unimodal maps." Fundamenta Mathematicae 160.3 (1999): 219-246. <http://eudml.org/doc/212390>.

@article{Brucks1999,
abstract = {We discuss the inverse limit spaces of unimodal interval maps as topological spaces. Based on the combinatorial properties of the unimodal maps, properties of the subcontinua of the inverse limit spaces are studied. Among other results, we give combinatorial conditions for an inverse limit space to have only arc+ray subcontinua as proper (non-trivial) subcontinua. Also, maps are constructed whose inverse limit spaces have the inverse limit spaces of a prescribed set of periodic unimodal maps as subcontinua.},
author = {Brucks, Karen, Bruin, Henk},
journal = {Fundamenta Mathematicae},
keywords = {unimodal maps; inverse limit},
language = {eng},
number = {3},
pages = {219-246},
title = {Subcontinua of inverse limit spaces of unimodal maps},
url = {http://eudml.org/doc/212390},
volume = {160},
year = {1999},
}

TY - JOUR
AU - Brucks, Karen
AU - Bruin, Henk
TI - Subcontinua of inverse limit spaces of unimodal maps
JO - Fundamenta Mathematicae
PY - 1999
VL - 160
IS - 3
SP - 219
EP - 246
AB - We discuss the inverse limit spaces of unimodal interval maps as topological spaces. Based on the combinatorial properties of the unimodal maps, properties of the subcontinua of the inverse limit spaces are studied. Among other results, we give combinatorial conditions for an inverse limit space to have only arc+ray subcontinua as proper (non-trivial) subcontinua. Also, maps are constructed whose inverse limit spaces have the inverse limit spaces of a prescribed set of periodic unimodal maps as subcontinua.
LA - eng
KW - unimodal maps; inverse limit
UR - http://eudml.org/doc/212390
ER -

References

top
  1. [1] J. M. Aarts and R. J. Fokkink, The classification of solenoids, Proc. Amer. Math. Soc. 111 (1991), 1161-1163. Zbl0768.54026
  2. [2] M. Barge, Horseshoe maps and inverse limits, Pacific J. Math. 121 (1986), 29-39. Zbl0601.58049
  3. [3] M. Barge, K. Brucks and B. Diamond, Self-similarity in inverse limit spaces of the tent family, Proc. Amer. Math. Soc. 124 (1996), 3563-3570. Zbl0917.54041
  4. [4] M. Barge and B. Diamond, Homeomorphisms of inverse limit spaces of one-dimensional maps, Fund. Math. 146 (1995), 171-187. 
  5. [5] M. Barge and B. Diamond, Inverse limit spaces of infinitely renormalizable maps, Topology Appl. 83 (1998), 103-108. Zbl0967.54031
  6. [6] M. Barge and B. Diamond, Subcontinua of the closure of the unstable manifold at a homoclinic tangency, Ergodic Theory Dynam. Systems 19 (1999), 1-19. 
  7. [7] M. Barge and S. Holte, Nearly one-dimensional Hénon attractors and inverse limits, Nonlinearity 8 (1995), 29-42. 
  8. [8] M. Barge and J. Martin, Endpoints of inverse limit spaces and dynamics, in: Continua with the Houston Problem Book (Cincinnati, OH, 1994), Lecture Notes in Pure and Appl. Math. 170, Dekker, New York, 1995, 165-182. Zbl0826.58023
  9. [9] M. Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478-483. Zbl0113.37705
  10. [10] K. Brucks, B. Diamond, M. V. Otero-Espinar and C. Tresser, Dense orbits of critical points for the tent map, in: Contemp. Math. 117, Amer. Math. Soc., Providence, RI, 1991, 57-61. Zbl0746.34029
  11. [11] H. Bruin, Invariant measures of interval maps, Ph.D. thesis, Delft, 1994. Zbl0812.58052
  12. [12] H. Bruin, Combinatorics of the kneading map, Internat J. Bifur. and Chaos Appl. Sci. Engrg. 5 (1995), 1339-1349. Zbl0886.58023
  13. [13] H. Bruin, Planar embeddings of inverse limit spaces of unimodal maps, Topology Appl., to appear. Zbl0954.54019
  14. [14] H. Bruin, Inverse limit spaces of post-critically finite tent maps, preprint, 1998. Zbl0973.37011
  15. [15] D W. Dębski, On topological types of the simplest indecomposable continua, Colloq. Math. 49 (1985), 203-211. Zbl0591.54026
  16. [16] F. Hofbauer, The topological entropy of the transformation x ↦ ax(1-x), Monatsh. Math. 90 (1980), 117-141. Zbl0433.54009
  17. [17] F. Hofbauer and G. Keller, Quadratic maps without asymptotic measure, Comm. Math. Phys. 127 (1990), 319-337. Zbl0702.58034
  18. [18] S. Holte, Generalized horseshoe maps and inverse limits, Pacific J. Math. 156 (1992), 297-305. Zbl0723.58034
  19. [19] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, New York, 1993. Zbl0791.58003
  20. [20] J. Mioduszewski, Mappings of inverse limits, Colloq. Math. 10 (1963), 39-44. Zbl0118.18205
  21. [21] S. Nadler, Continuum Theory, Dekker, New York, 1992. 
  22. [22] R. C. Swanson and H. W. Volkmer, Invariants of weak equivalence in primitive matrices, preprint, 1998. Zbl0984.37019
  23. [23] W W. T. Watkins, Homeomorphic classification of certain inverse limit spaces with open bonding maps, Pacific J. Math. 103 (1982), 589-601. Zbl0451.54027
  24. [24] R. F. Williams, One-dimensional nonwandering sets, Topology 6 (1967), 473-487. Zbl0159.53702

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.