A Lefschetz-type coincidence theorem

Peter Saveliev

Fundamenta Mathematicae (1999)

  • Volume: 162, Issue: 1, page 65-89
  • ISSN: 0016-2736

Abstract

top
A Lefschetz-type coincidence theorem for two maps f,g: X → Y from an arbitrary topological space to a manifold is given: I f g = λ f g , that is, the coincidence index is equal to the Lefschetz number. It follows that if λ f g 0 then there is an x ∈ X such that f(x) = g(x). In particular, the theorem contains well-known coincidence results for (i) X,Y manifolds, f boundary-preserving, and (ii) Y Euclidean, f with acyclic fibres. It also implies certain fixed point results for multivalued maps with “point-like” (acyclic) and “sphere-like” values.

How to cite

top

Saveliev, Peter. "A Lefschetz-type coincidence theorem." Fundamenta Mathematicae 162.1 (1999): 65-89. <http://eudml.org/doc/212413>.

@article{Saveliev1999,
abstract = {A Lefschetz-type coincidence theorem for two maps f,g: X → Y from an arbitrary topological space to a manifold is given: $I_\{fg\} = λ _\{fg\}$, that is, the coincidence index is equal to the Lefschetz number. It follows that if $λ_\{fg\} ≠ 0$ then there is an x ∈ X such that f(x) = g(x). In particular, the theorem contains well-known coincidence results for (i) X,Y manifolds, f boundary-preserving, and (ii) Y Euclidean, f with acyclic fibres. It also implies certain fixed point results for multivalued maps with “point-like” (acyclic) and “sphere-like” values.},
author = {Saveliev, Peter},
journal = {Fundamenta Mathematicae},
keywords = {Lefschetz coincidence theory; Lefschetz number; coincidence index; fixed point; multivalued map; Vietoris mapping},
language = {eng},
number = {1},
pages = {65-89},
title = {A Lefschetz-type coincidence theorem},
url = {http://eudml.org/doc/212413},
volume = {162},
year = {1999},
}

TY - JOUR
AU - Saveliev, Peter
TI - A Lefschetz-type coincidence theorem
JO - Fundamenta Mathematicae
PY - 1999
VL - 162
IS - 1
SP - 65
EP - 89
AB - A Lefschetz-type coincidence theorem for two maps f,g: X → Y from an arbitrary topological space to a manifold is given: $I_{fg} = λ _{fg}$, that is, the coincidence index is equal to the Lefschetz number. It follows that if $λ_{fg} ≠ 0$ then there is an x ∈ X such that f(x) = g(x). In particular, the theorem contains well-known coincidence results for (i) X,Y manifolds, f boundary-preserving, and (ii) Y Euclidean, f with acyclic fibres. It also implies certain fixed point results for multivalued maps with “point-like” (acyclic) and “sphere-like” values.
LA - eng
KW - Lefschetz coincidence theory; Lefschetz number; coincidence index; fixed point; multivalued map; Vietoris mapping
UR - http://eudml.org/doc/212413
ER -

References

top
  1. [1] E. G. Begle, The Vietoris Mapping Theorem for bicompact spaces, Ann. of Math. 81 (1965), 82-99. 
  2. [2] G. E. Bredon, Topology and Geometry, Springer, 1993. Zbl0791.55001
  3. [3] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott-Foresman, Chicago, 1971. Zbl0216.19601
  4. [4] R. F. Brown and H. Schirmer, Nielsen coincidence theory and coincidence-producing maps for manifolds with boundary, Topology Appl. 46 (1992), 65-79. Zbl0757.55002
  5. [5] R. F. Brown and H. Schirmer, Correction to "Nielsen coincidence theory and coincidence-producing maps for manifolds with boundary", ibid. 67 (1995), 233-234. Zbl0843.55003
  6. [6] V. R. Davidyan, Coincidence points of two maps, Russian Acad. Sci. Sb. Math. 40 (1980), 205-210. Zbl0465.55002
  7. [7] V. R. Davidyan, On coincidence of two maps for manifolds with boundary, Russian Math. Surveys 38 (1983), no. 2, 176. Zbl0548.55001
  8. [8] A. Dawidowicz, Spherical maps, Fund. Math. 127 (1987), 187-196. 
  9. [9] A. Dold, Lectures on Algebraic Topology, Springer, 1980. 
  10. [10] A. Dold, Fixed point index and fixed point theorem for Euclidean neighborhood retracts, Topology 4 (1965), 1-8. Zbl0135.23101
  11. [11] A. Dold, The fixed point transfer of fibre-preserving maps, Math. Z. 148 (1976), 215-244. Zbl0329.55007
  12. [12] A. Dold, A coincidence-fixed-point index, Enseign. Math. (2) 24 (1978), 41-53. Zbl0378.55003
  13. [13] A. N. Dranishnikov, Absolute extensors in dimension n and dimension-raising n-soft maps, Russian Math. Surveys 39 (1984), no. 5, 63-111. Zbl0572.54012
  14. [14] S. Eilenberg and D. Montgomery, Fixed point theorems for multi-valued transformations, Amer. J. Math. 68 (1946), 214-222. Zbl0060.40203
  15. [15] L. Górniewicz, Homological methods in fixed-point theory of multi-valued maps, Dissertationes Math. (Rozprawy Mat.) 129 (1976). Zbl0324.55002
  16. [16] L. Górniewicz, Fixed point theorems for mutivalued maps of subsets of Euclidean spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 111-115. Zbl0409.55002
  17. [17] L. Górniewicz and A. Granas, Some general theorems in coincidence theory I, J. Math. Pures Appl. 60 (1981), 361-373. Zbl0482.55002
  18. [18] L. Górniewicz and A. Granas, Topology of morphisms and fixed point problems for set-valued maps, in: Fixed Point Theory and Applications, M. A. Thera and J.-B. Baillon (eds.), Pitman Res. Notes Math. Ser. 252, Longman Sci. Tech., Harlow, 1991, 173-191. Zbl0760.54030
  19. [19] V. G. Gutev, A fixed-point theorem for U V n usco maps, Proc. Amer. Math. Soc. 124 (1996), 945-952. Zbl0861.54041
  20. [20] B. Halpern, A general coincidence theory, Pacific J. Math. 77 (1978), 451-471. Zbl0411.55001
  21. [21] D. S. Kahn, An example in Čech cohomology, Proc. Amer. Math. Soc. 16 (1969), 584. Zbl0141.40302
  22. [22] W. Kryszewski, Remarks on the Vietoris Theorem, Topol. Methods Nonlinear Anal. 8 (1996), 383-405. Zbl0891.55024
  23. [23] S. Lefschetz, Algebraic Topology, Amer. Math. Soc. Colloq. Publ. 27, Amer. Math. Soc., Providence, RI, 1942. 
  24. [24] K. Mukherjea, Coincidence theory for manifolds with boundary, Topology Appl. 46 (1992), 23-39. Zbl0757.55003
  25. [25] M. Nakaoka, Coincidence Lefschetz numbers for a pair of fibre preserving maps, J. Math. Soc. Japan 32 (1980), 751-779. Zbl0447.55001
  26. [26] B. O'Neill, A fixed point theorem for multi-valued functions, Duke Math. J. 24 (1957), 61-62. 
  27. [27] S. N. Patnaik, Fixed points of multiple-valued transformations, Fund. Math. 65 (1969), 345-349. Zbl0203.56001
  28. [28] H. Schirmer, Fixed points, antipodal points and coincidences of n-acyclic valued multifunctions, in: Topological Methods in Nonlinear Functional Analysis, Contemp. Math. 21, Amer. Math. Soc., Providence, RI, 1983, 207-212. 
  29. [29] J. W. Vick, Homology Theory. An Introduction to Algebraic Topology, Academic Press, New York, 1973. Zbl0262.55005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.