Atomic compactness for reflexive graphs
Fundamenta Mathematicae (1999)
- Volume: 162, Issue: 2, page 99-117
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] E. Corominas, Sur les ensembles ordonnés projectifs et la propriété du point fixe, C. R. Acad. Sci. Paris Sér. I 311 (1990), 199-204. Zbl0731.06001
- [2] C. Delhommé, Propriétés de projection, thèse, Université Claude Bernard-Lyon I, 1995.
- [3] C. Delhommé, Infinite projection properties, Math. Logic Quart. 44 (1998), 481-492. Zbl0922.03049
- [4] S. Hazan, On triangle-free projective graphs, Algebra Universalis 35 (1996), 185-196. Zbl0845.05062
- [5] R. McKenzie and S. Shelah, The cardinals of simple models for universal theories, in: Proc. Sympos. Pure Math. 25, Amer. Math. Soc., 1971, 53-74.
- [6] J. Mycielski, Some compactifications of general algebras, Colloq. Math. 13 (1964), 1-9. Zbl0136.26102
- [7] J. Mycielski and C. Ryll-Nardzewski, Equationally compact algebras II, Fund. Math. 61 (1968), 271-281.
- [8] W. Taylor, Atomic compactness and graph theory, ibid. 65 (1969), 139-145. Zbl0182.34401
- [9] W. Taylor, Compactness and chromatic number, ibid. 67 (1970), 147-153. Zbl0199.30401
- [10] W. Taylor, Some constructions of compact algebras, Ann. Math. Logic 3 (1971), 395-435. Zbl0239.08003
- [11] W. Taylor, Residually small varieties, Algebra Universalis 2 (1972), 33-53. Zbl0263.08005
- [12] B. Węglorz, Equationally compact algebras (I), Fund. Math. 59 (1966), 289-298. Zbl0221.02039
- [13] F. Wehrung, Equational compactness of bi-frames and projection algebras, Algebra Universalis 33 (1995), 478-515. Zbl0830.08005
- [14] G. Wenzel, Equational compactness, Appendix 6 in: G. Grätzer, Universal Algebra, 2nd ed., Springer, 1979.