Chains and antichains in Boolean algebras

M. Losada; Stevo Todorčević

Fundamenta Mathematicae (2000)

  • Volume: 163, Issue: 1, page 55-76
  • ISSN: 0016-2736

Abstract

top
We give an affirmative answer to problem DJ from Fremlin’s list [8] which asks whether M A ω 1 implies that every uncountable Boolean algebra has an uncountable set of pairwise incomparable elements.

How to cite

top

Losada, M., and Todorčević, Stevo. "Chains and antichains in Boolean algebras." Fundamenta Mathematicae 163.1 (2000): 55-76. <http://eudml.org/doc/212429>.

@article{Losada2000,
abstract = {We give an affirmative answer to problem DJ from Fremlin’s list [8] which asks whether $MA_\{ω_1\}$ implies that every uncountable Boolean algebra has an uncountable set of pairwise incomparable elements.},
author = {Losada, M., Todorčević, Stevo},
journal = {Fundamenta Mathematicae},
keywords = {chains; antichains; Boolean algebras},
language = {eng},
number = {1},
pages = {55-76},
title = {Chains and antichains in Boolean algebras},
url = {http://eudml.org/doc/212429},
volume = {163},
year = {2000},
}

TY - JOUR
AU - Losada, M.
AU - Todorčević, Stevo
TI - Chains and antichains in Boolean algebras
JO - Fundamenta Mathematicae
PY - 2000
VL - 163
IS - 1
SP - 55
EP - 76
AB - We give an affirmative answer to problem DJ from Fremlin’s list [8] which asks whether $MA_{ω_1}$ implies that every uncountable Boolean algebra has an uncountable set of pairwise incomparable elements.
LA - eng
KW - chains; antichains; Boolean algebras
UR - http://eudml.org/doc/212429
ER -

References

top
  1. [1] U. Abraham and S. Shelah, Martin’s axiom does not imply that every two 1 -dense sets of reals are isomorphic, Israel J. Math. 38 (1981), 161-176. Zbl0457.03048
  2. [2] J. E. Baumgartner, Chains and antichains in P(ℕ), J. Symbolic Logic 45 (1980), 85-92. Zbl0437.03027
  3. [3] J. E. Baumgartner, Applications of the proper forcing axiom, in: Handbook of Set-Theoretic Topology, Elsevier, Amsterdam, 1984, 913-959. 
  4. [4] J. E. Baumgartner and P. Komjáth, Boolean algebras in which every chain and antichain is countable, Fund. Math. 111 (1981), 125-133. Zbl0452.03044
  5. [5] R. Bonnet and S. Shelah, Narrow Boolean algebras, Ann. Pure Appl. Logic 28 (1985), 1-12. Zbl0563.03035
  6. [6] B. Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941), 600-610. Zbl0025.31002
  7. [7] D. Fremlin, Consequences of Martin's Axiom, Cambridge Univ. Press, 1984. Zbl0551.03033
  8. [8] D. Fremlin, Problems, version of May, 1998. 
  9. [9] F. Galvin and B. Jónsson, Distributive sublattices of a free lattice, Canad. J. Math. 13 (1961), 265-272. Zbl0132.26202
  10. [10] Dj. Kurepa, Transformations monotones des ensembles partiellement ordonnés, Rev. Cienc. (Lima) 437 (1943), 483-500. 
  11. [11] J. D. Monk, Cardinal Invariants on Boolean Algebras, Birkhäuser, Basel, 1996. Zbl0849.03038
  12. [12] S. Shelah, Decomposing uncountable squares to countably many chains, J. Combin. Theory Ser. A 21 (1976), 110-114. Zbl0366.04009
  13. [13] S. Shelah, On uncountable Boolean algebras with no uncountable pairwise comparable or incomparable sets of elements, Notre Dame J. Formal Logic 22 (1984), 301-308. Zbl0472.03042
  14. [14] W. Sierpiński, Sur un problème de la théorie des relations, Ann. Scuola Norm. Sup. Pisa (2) 2 (1933), 285-287. Zbl0007.09702
  15. [15] S. Todorčević, Trees and linearly ordered sets, in: Handbook of Set-Theoretic Topology, Elsevier, Amsterdam, 1984, 235-293. 
  16. [16] S. Todorčević, Remarks on chain conditions in products, Compositio Math. 55 (1985), 295-302. Zbl0583.54003
  17. [17] S. Todorčević, Remarks on cellularity in products, ibid. 57 (1986), 357-372. Zbl0616.54002
  18. [18] S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261-294. Zbl0658.03028
  19. [19] S. Todorčević, Irredundant sets in Boolean algebras, Trans. Amer. Math. Soc. 339 (1993), 35-44. Zbl0781.06010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.