# Dynamics on Hubbard trees

Fundamenta Mathematicae (2000)

- Volume: 164, Issue: 2, page 115-141
- ISSN: 0016-2736

## Access Full Article

top## Abstract

top## How to cite

topAlsedà, Lluís, and Fagella, Núria. "Dynamics on Hubbard trees." Fundamenta Mathematicae 164.2 (2000): 115-141. <http://eudml.org/doc/212450>.

@article{Alsedà2000,

abstract = {It is well known that the Hubbard tree of a postcritically finite complex polynomial contains all the combinatorial information on the polynomial. In fact, an abstract Hubbard tree as defined in [23] uniquely determines the polynomial up to affine conjugation. In this paper we give necessary and sufficient conditions enabling one to deduce directly from the restriction of a quadratic Misiurewicz polynomial to its Hubbard tree whether the polynomial is renormalizable, and in this case, of which type. Moreover, we study dynamical features such as entropy, transitivity or periodic structure of the polynomial restricted to the Hubbard tree, and compare them with the properties of the polynomial on its Julia set. In other words, we want to study how much of the "dynamical information" about the polynomial is captured by the Hubbard tree.},

author = {Alsedà, Lluís, Fagella, Núria},

journal = {Fundamenta Mathematicae},

keywords = {Hubbard trees; renormalization; Misiurewicz polynomials; transitivity; topological entropy},

language = {eng},

number = {2},

pages = {115-141},

title = {Dynamics on Hubbard trees},

url = {http://eudml.org/doc/212450},

volume = {164},

year = {2000},

}

TY - JOUR

AU - Alsedà, Lluís

AU - Fagella, Núria

TI - Dynamics on Hubbard trees

JO - Fundamenta Mathematicae

PY - 2000

VL - 164

IS - 2

SP - 115

EP - 141

AB - It is well known that the Hubbard tree of a postcritically finite complex polynomial contains all the combinatorial information on the polynomial. In fact, an abstract Hubbard tree as defined in [23] uniquely determines the polynomial up to affine conjugation. In this paper we give necessary and sufficient conditions enabling one to deduce directly from the restriction of a quadratic Misiurewicz polynomial to its Hubbard tree whether the polynomial is renormalizable, and in this case, of which type. Moreover, we study dynamical features such as entropy, transitivity or periodic structure of the polynomial restricted to the Hubbard tree, and compare them with the properties of the polynomial on its Julia set. In other words, we want to study how much of the "dynamical information" about the polynomial is captured by the Hubbard tree.

LA - eng

KW - Hubbard trees; renormalization; Misiurewicz polynomials; transitivity; topological entropy

UR - http://eudml.org/doc/212450

ER -

## References

top- [1] R. Adler, A. Konheim and J. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. Zbl0127.13102
- [2] Ll. Alsedà, S. Baldwin, J. Llibre and M. Misiurewicz, Entropy of transitive tree maps, Topology 36 (1996), 519-532. Zbl0887.58013
- [3] Ll. Alsedà, S. Kolyada, J. Llibre and Ľ. Snoha, Entropy and periodic points for transitive maps, Trans. Amer. Math. Soc. 351 (1999), 1551-1573. Zbl0913.58034
- [4] Ll. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, Adv. Ser. Nonlinear Dynamics 5, World Sci., Singapore, 1993. Zbl0843.58034
- [5] Ll. Alsedà, M. A. del Río and J. A. Rodríguez, A splitting theorem for transitive maps, J. Math. Anal. Appl. 232 (1999), 359-375. Zbl0959.37032
- [6] Ll. Alsedà, M. A. del Río and J. A. Rodríguez, Cofiniteness of the set of periods for totally transitive tree maps, Internat. J. Bifur. Chaos 9 (1999), 1877-1880. Zbl1089.37519
- [7] A. Beardon, Iteration of Rational Functions, Grad. Texts in Math. 132, Springer, New York, 1991.
- [8] P. Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. 11 (1984), 85-141. Zbl0558.58017
- [9] L. Block, J. Guckenheimer, M. Misiurewicz and L.-S. Young, Periodic points and topological entropy of one dimensional maps, in: Global Theory of Dynamical Systems, Lecture Notes in Math. 819, Springer, Berlin, 1980, 18-34.
- [10] A. M. Blokh, On transitive mappings of one-dimensional branched manifolds, in: Diff.-Difference Equations and Problems of Mathematical Physics, Inst. of Math., Kiev, 1984, 3-9 (in Russian).
- [11] A. M. Blokh, On the connection between entropy and transitivity for one-dimensional mappings, Russian Math. Surveys 42 (1987), 165-166. Zbl0774.28011
- [12] L. Carleson and T. Gamelin, Complex Dynamics, Springer, New York, 1993. Zbl0782.30022
- [13] M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math. 527, Springer, Berlin, 1976. Zbl0328.28008
- [14] A. Douady et J. Hubbard, Etude dynamique des polynômes complexes, part I, Publ. Math. Orsay, 1984-1985. Zbl0552.30018
- [15] A. Douady et J. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. Ecole Norm. Sup. 18 (1985), 287-343. Zbl0587.30028
- [16] A. Eremenko and M. Lyubich, The dynamics of analytic transformations, Leningrad Math. J. 1 (1990), 563-634. Zbl0717.58029
- [17] F. R. Gantmacher, The Theory of Matrices, Vol. 2, Chelsea, New York, 1959. Zbl0085.01001
- [18] J. Hubbard, Puzzles and quadratic tableaux (according to Yoccoz), preprint, 1990.
- [19] C. T. McMullen, Complex Dynamics and Renormalization, Princeton Univ. Press, 1994. Zbl0822.30002
- [20] J. Milnor, Dynamics in One Complex Variable: Introductory Lectures, Vieweg, 1999.
- [21] J. Milnor, Local connectivity of Julia sets: expository lectures, Stony Brook preprint no. 1990/5 (1992).
- [22] C. L. Petersen, On the Pommerenke-Levin-Yoccoz inequality, Ergodic Theory Dynam. Systems 13 (1993), 785-806. Zbl0802.30022
- [23] A. Poirier, On postcritically finite polynomials. Part two: Hubbard trees, Stony Brook preprint no. 1993/7.
- [24] Se E. Seneta, Non-Negative Matrices and Markov Chains, Springer Ser. in Statist., Springer, Berlin, 1981.
- [25] N. Steinmetz, Rational Iteration: Complex Analytic Dynamical Systems, de Gruyter, 1993.
- [26] P. Walters, An Introduction to Ergodic Theory, Grad. Texts in Math. 79, Springer, New York, 1982.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.