Inverse limit spaces of post-critically finite tent maps

Henk Bruin

Fundamenta Mathematicae (2000)

  • Volume: 165, Issue: 2, page 125-138
  • ISSN: 0016-2736

Abstract

top
Let (I,T) be the inverse limit space of a post-critically finite tent map. Conditions are given under which these inverse limit spaces are pairwise nonhomeomorphic. This extends results of Barge & Diamond [2].

How to cite

top

Bruin, Henk. "Inverse limit spaces of post-critically finite tent maps." Fundamenta Mathematicae 165.2 (2000): 125-138. <http://eudml.org/doc/212462>.

@article{Bruin2000,
abstract = {Let (I,T) be the inverse limit space of a post-critically finite tent map. Conditions are given under which these inverse limit spaces are pairwise nonhomeomorphic. This extends results of Barge & Diamond [2].},
author = {Bruin, Henk},
journal = {Fundamenta Mathematicae},
keywords = {inverse limit space; interval map; tent map},
language = {eng},
number = {2},
pages = {125-138},
title = {Inverse limit spaces of post-critically finite tent maps},
url = {http://eudml.org/doc/212462},
volume = {165},
year = {2000},
}

TY - JOUR
AU - Bruin, Henk
TI - Inverse limit spaces of post-critically finite tent maps
JO - Fundamenta Mathematicae
PY - 2000
VL - 165
IS - 2
SP - 125
EP - 138
AB - Let (I,T) be the inverse limit space of a post-critically finite tent map. Conditions are given under which these inverse limit spaces are pairwise nonhomeomorphic. This extends results of Barge & Diamond [2].
LA - eng
KW - inverse limit space; interval map; tent map
UR - http://eudml.org/doc/212462
ER -

References

top
  1. [1] C. Bandt, Composants of the horseshoe, Fund. Math.144 (1994), 231-241. Zbl0818.54028
  2. [2] M. Barge and B. Diamond, Homeomorphisms of inverse limit spaces of one-dimensional maps, ibid.146 (1995), 171-187. 
  3. [3] M. Barge and S. Holte, Nearly one-dimensional Hénon attractors and inverse limits, Nonlinearity8 (1995), 29-42. 
  4. [4] M. Barge and W. Ingram, Inverse limits on [0,1] using logistic bonding maps, Topology Appl.72 (1996), 159-172. Zbl0859.54030
  5. [5] M. Barge and J. Martin, Endpoints of inverse limit spaces and dynamics, in: Continua with the Houston Problem Book, Lecture Notes in Pure and Appl. Math. 170, Marcel Dekker, New York, 1995, 165-182. Zbl0826.58023
  6. [6] K. Brucks and B. Diamond, A symbolic representation of inverse limit spaces for a class of unimodal maps, ibid., 207-226. Zbl0828.58011
  7. [7] H. Bruin, Planar embeddings of inverse limit spaces of unimodal maps, Topology Applications96 (1999), 191-208. Zbl0954.54019
  8. [8] A. Douady et J. Hubbard, Étude dynamique des polynômes complexes, partie I, Publ. Math. Orsay 85-04, 1984. Zbl0552.30018
  9. [9] F. Durand, A generalization of Cobham's Theorem, Theory Comput. Syst.31 (1998), 169-185. Zbl0895.68081
  10. [10] R. J. Fokkink, The structure of trajectories, Ph.D. thesis, Delft, 1992. 
  11. [11] L. Kailhofer, A partial classification of inverse limit spaces of tent maps with periodic critical points, Ph.D. thesis, Milwaukee, 1999. Zbl1032.54021
  12. [12] B. Mossé, Puissances de mots et reconnaissabilité des points fixes d'une substitution, Theoret. Comput. Sci.99 (1992), 327-334. Zbl0763.68049
  13. [13] S. Nadler, Continuum Theory, Marcel Dekker, New York, 1992. 
  14. [14] M. Queffélec, Substitution Dynamical Systems. Spectral Analysis, Lecture Notes in Math.1294, Springer, 1987. 
  15. [15] R. Swanson and H. Volkmer, Invariants of weak equivalence in primitive matrices, Ergodic Theory Dynam. Systems 20 (2000), 611-616. Zbl0984.37019
  16. [16] W. Watkins, Homeomorphic classification of certain inverse limit spaces with open bonding maps, Pacific J. Math.103 (1982), 589-601. Zbl0451.54027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.