Malliavin calculus for stable processes on homogeneous groups

Piotr Graczyk

Studia Mathematica (1991)

  • Volume: 100, Issue: 3, page 183-205
  • ISSN: 0039-3223

Abstract

top
Let μ t t > 0 be a symmetric semigroup of stable measures on a homogeneous group, with smooth Lévy measure. Applying Malliavin calculus for jump processes we prove that the measures μ t have smooth densities.

How to cite

top

Graczyk, Piotr. "Malliavin calculus for stable processes on homogeneous groups." Studia Mathematica 100.3 (1991): 183-205. <http://eudml.org/doc/215882>.

@article{Graczyk1991,
abstract = {Let $\{μ_t\}_\{t>0\}$ be a symmetric semigroup of stable measures on a homogeneous group, with smooth Lévy measure. Applying Malliavin calculus for jump processes we prove that the measures $μ_t$ have smooth densities.},
author = {Graczyk, Piotr},
journal = {Studia Mathematica},
keywords = {symmetric semigroup; stable measures; Malliavin calculus; smooth densities},
language = {eng},
number = {3},
pages = {183-205},
title = {Malliavin calculus for stable processes on homogeneous groups},
url = {http://eudml.org/doc/215882},
volume = {100},
year = {1991},
}

TY - JOUR
AU - Graczyk, Piotr
TI - Malliavin calculus for stable processes on homogeneous groups
JO - Studia Mathematica
PY - 1991
VL - 100
IS - 3
SP - 183
EP - 205
AB - Let ${μ_t}_{t>0}$ be a symmetric semigroup of stable measures on a homogeneous group, with smooth Lévy measure. Applying Malliavin calculus for jump processes we prove that the measures $μ_t$ have smooth densities.
LA - eng
KW - symmetric semigroup; stable measures; Malliavin calculus; smooth densities
UR - http://eudml.org/doc/215882
ER -

References

top
  1. [1] J.-M. Bismut, Calcul des variations stochastique et processus de sauts, Z. Wahrsch. Verw. Gebiete 63 (1983), 147-235. Zbl0494.60082
  2. [2] J.-M. Bismut, Jump processes and boundary processes, in: Stochastic Analysis, Proc. Taniguchi Internat. Sympos., Katata and Kyoto, 1982, K. Itô (ed.), North-Holland Math. Library 32, Kinokuniya and North-Holland, 1984, 53-104. 
  3. [3] S. Ethier and T. Kurtz, Markov processes, Characterization and Convergence, Wiley, New York 1986. Zbl0592.60049
  4. [4] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982. Zbl0508.42025
  5. [5] I. I. Gikhman and A. W. Skorokhod, Introduction to the Theory of Stochastic Processes, Nauka, Moscow 1965 (in Russian). 
  6. [6] P. Głowacki, A calculus of symbols and convolution semigroups on the Heisenberg group, Studia Math. 77 (1982), 291-321. Zbl0504.43012
  7. [7] P. Głowacki, Stable semigroups of measures on the Heisenberg group, ibid. 79 (1984), 105-138. Zbl0563.43002
  8. [8] P. Głowacki, Stable semi-groups of measures as commutative approximate identities on non-graded homogeneous groups, Invent. Math. 83 (1986), 557-582. Zbl0595.43006
  9. [9] A. Hulanicki, A class of convolution semi-groups of measures on a Lie group, in: Lecture Notes in Math. 828, Springer, 1980, 82-101. Zbl0462.28009
  10. [10] G. A. Hunt, Semi-groups of measures on Lie groups, Trans. Amer. Math. Soc. 81 (1956), 264-293. Zbl0073.12402
  11. [11] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam 1981. Zbl0495.60005
  12. [12] A. Janssen, Charakterisierung stetiger Faltungshalbgruppen durch das Lévy-Mass, Math. Ann. 246 (1980), 233-240. Zbl0407.60005
  13. [13] P. Malliavin, Stochastic calculus of variation and hypoelliptic operators, in: Proc. Internat. Sympos. on Stochastic Differential Equations, Kyoto 1976, K. Itô (ed.), Kinokuniya and Wiley, 1978, 195-263. 
  14. [14] P. Pazy, Semi-groups of Linear Operators and Application to Partial Differential Equations, Springer, New York 1983. Zbl0516.47023
  15. [15] D. Stroock, The Malliavin calculus and its application to second order parabolic differential equations: Part I, Math. Systems Theory 14 (1981), 25-65. Zbl0474.60061
  16. [16] F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer, New York 1983. Zbl0516.58001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.