# Malliavin calculus for stable processes on homogeneous groups

Studia Mathematica (1991)

- Volume: 100, Issue: 3, page 183-205
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topGraczyk, Piotr. "Malliavin calculus for stable processes on homogeneous groups." Studia Mathematica 100.3 (1991): 183-205. <http://eudml.org/doc/215882>.

@article{Graczyk1991,

abstract = {Let $\{μ_t\}_\{t>0\}$ be a symmetric semigroup of stable measures on a homogeneous group, with smooth Lévy measure. Applying Malliavin calculus for jump processes we prove that the measures $μ_t$ have smooth densities.},

author = {Graczyk, Piotr},

journal = {Studia Mathematica},

keywords = {symmetric semigroup; stable measures; Malliavin calculus; smooth densities},

language = {eng},

number = {3},

pages = {183-205},

title = {Malliavin calculus for stable processes on homogeneous groups},

url = {http://eudml.org/doc/215882},

volume = {100},

year = {1991},

}

TY - JOUR

AU - Graczyk, Piotr

TI - Malliavin calculus for stable processes on homogeneous groups

JO - Studia Mathematica

PY - 1991

VL - 100

IS - 3

SP - 183

EP - 205

AB - Let ${μ_t}_{t>0}$ be a symmetric semigroup of stable measures on a homogeneous group, with smooth Lévy measure. Applying Malliavin calculus for jump processes we prove that the measures $μ_t$ have smooth densities.

LA - eng

KW - symmetric semigroup; stable measures; Malliavin calculus; smooth densities

UR - http://eudml.org/doc/215882

ER -

## References

top- [1] J.-M. Bismut, Calcul des variations stochastique et processus de sauts, Z. Wahrsch. Verw. Gebiete 63 (1983), 147-235. Zbl0494.60082
- [2] J.-M. Bismut, Jump processes and boundary processes, in: Stochastic Analysis, Proc. Taniguchi Internat. Sympos., Katata and Kyoto, 1982, K. Itô (ed.), North-Holland Math. Library 32, Kinokuniya and North-Holland, 1984, 53-104.
- [3] S. Ethier and T. Kurtz, Markov processes, Characterization and Convergence, Wiley, New York 1986. Zbl0592.60049
- [4] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982. Zbl0508.42025
- [5] I. I. Gikhman and A. W. Skorokhod, Introduction to the Theory of Stochastic Processes, Nauka, Moscow 1965 (in Russian).
- [6] P. Głowacki, A calculus of symbols and convolution semigroups on the Heisenberg group, Studia Math. 77 (1982), 291-321. Zbl0504.43012
- [7] P. Głowacki, Stable semigroups of measures on the Heisenberg group, ibid. 79 (1984), 105-138. Zbl0563.43002
- [8] P. Głowacki, Stable semi-groups of measures as commutative approximate identities on non-graded homogeneous groups, Invent. Math. 83 (1986), 557-582. Zbl0595.43006
- [9] A. Hulanicki, A class of convolution semi-groups of measures on a Lie group, in: Lecture Notes in Math. 828, Springer, 1980, 82-101. Zbl0462.28009
- [10] G. A. Hunt, Semi-groups of measures on Lie groups, Trans. Amer. Math. Soc. 81 (1956), 264-293. Zbl0073.12402
- [11] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam 1981. Zbl0495.60005
- [12] A. Janssen, Charakterisierung stetiger Faltungshalbgruppen durch das Lévy-Mass, Math. Ann. 246 (1980), 233-240. Zbl0407.60005
- [13] P. Malliavin, Stochastic calculus of variation and hypoelliptic operators, in: Proc. Internat. Sympos. on Stochastic Differential Equations, Kyoto 1976, K. Itô (ed.), Kinokuniya and Wiley, 1978, 195-263.
- [14] P. Pazy, Semi-groups of Linear Operators and Application to Partial Differential Equations, Springer, New York 1983. Zbl0516.47023
- [15] D. Stroock, The Malliavin calculus and its application to second order parabolic differential equations: Part I, Math. Systems Theory 14 (1981), 25-65. Zbl0474.60061
- [16] F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer, New York 1983. Zbl0516.58001

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.