Large deviation estimate of transition densities for jump processes

Yasushi Ishikawa

Annales de l'I.H.P. Probabilités et statistiques (1997)

  • Volume: 33, Issue: 2, page 179-222
  • ISSN: 0246-0203

How to cite

top

Ishikawa, Yasushi. "Large deviation estimate of transition densities for jump processes." Annales de l'I.H.P. Probabilités et statistiques 33.2 (1997): 179-222. <http://eudml.org/doc/77565>.

@article{Ishikawa1997,
author = {Ishikawa, Yasushi},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Jump processes; large deviation; transition density},
language = {eng},
number = {2},
pages = {179-222},
publisher = {Gauthier-Villars},
title = {Large deviation estimate of transition densities for jump processes},
url = {http://eudml.org/doc/77565},
volume = {33},
year = {1997},
}

TY - JOUR
AU - Ishikawa, Yasushi
TI - Large deviation estimate of transition densities for jump processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1997
PB - Gauthier-Villars
VL - 33
IS - 2
SP - 179
EP - 222
LA - eng
KW - Jump processes; large deviation; transition density
UR - http://eudml.org/doc/77565
ER -

References

top
  1. [1] V.I. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, Vol. 60, Springer-Verlag, Berlin, 1978. Zbl0386.70001MR690288
  2. [2] R. Azencott, Grand deviations et applications, in Ecole d'Eté de Probabilités de Saint-Flour, VIII-1978 (P.L. Henneqin, ed.), Lecture Notes in Math., Vol. 774, Springer-Verlag, Berlin, 1980, pp. 1-176. Zbl0435.60028MR590626
  3. [3] C. Berg and G. Frost, Potential theory on locally compact Abelian groups, in Ergebnisse der Mathematik, Band 87, Springer-Verlag, Berlin-Heidelberg-New York, 1975. Zbl0308.31001MR481057
  4. [4] G. Ben Arous and R. Léandre, Dćroissance exponentielle du noyau de la chaleur sur la diagonale (II), Probab. Th. Rel. Fields, Vol. 90, 1991, pp. 377-402. Zbl0734.60027MR1133372
  5. [5] K. Bichteler, J.-B. Gravereaux and J. Jacod, Malliavin Calculus for Processes with Jumps, Gordon and Breach Science Publishers, New York, 1987. Zbl0706.60057MR1008471
  6. [6] J.-M. Bismut, Martingales, the Malliavin culculus and hypoellipticity under general Hörmander's conditions, Z. Wahrscheinlichkeitstheorie verw. Gebiete, Vol. 56, 1981, pp. 469-505. Zbl0445.60049MR621660
  7. [7] J.-M. Bismut, Calcul des variations stochastiques et processus de sauts, Z. Wahrsch. Verw. Gebiete, Vol. 63, 1983, pp. 147-235. Zbl0494.60082MR701527
  8. [8] J.-M. Bismut, Large deviation and the Malliavin calculus, in Progress in Mathematics, Vol. 45 (J. Coates and S. Helgason, eds.), Birkhäuser, Boston-Basel-Stuttgart, 1984. Zbl0537.35003MR755001
  9. [9] J.-M. Bismut, Jump processes and boundary processes, in Proceeding Taniguchi Symp., 1982 (K. Ito, ed.), North-Holland/Kinokuniya, Tokyo, 1984, pp. 53-104. Zbl0566.60057MR780753
  10. [10] L. Breiman, Probability, Classics in applied mathematics, SIAM, Philadelphia, 1992. Zbl0753.60001MR1163370
  11. [11] H. Doss and P. Priouret, Petites perturbations de systèmes dynamiques avec réflexion, Seminaire de Proba. XVII, Lecture Notes in Math., Vol. 986, Springer-Verlag, Berlin, 1983, pp. 353-370. Zbl0529.60061MR770425
  12. [12] S.N. Ethier and T.G. Kurtz, Markov Processes, John Wiley and Sons, New York, 1986. Zbl0592.60049MR838085
  13. [13] W.H. Fleming and H.M. Soner, Asymptotic expansion for Markov processes with Lévy generators, Applied Math. Opt., Vol 19, 1989, pp. 203-223. Zbl0713.60085MR962892
  14. [14] M.I. Freidlin and A.D. Ventcel, Random perturbation of dynamical system, Grundlehren der math. Wissenschaften, Band 260, Springer-Verlag, Berlin, 1984. Zbl0522.60055
  15. [15] P. Graczyk, Malliavin calculus for stable processes on homogeneous groups, Studia Math., Vol. 100, 1991, pp. 183-205. Zbl0745.60055MR1133384
  16. [16] Y. Ishikawa, On the lower bound of the density for jump processes in small time, Bull. Sc. math., Vol. 117, 1993, pp. 463-483. Zbl0793.60096MR1245807
  17. [17] Y. Ishikawa, Asymptotic behavior of the transition density for jump-type processes in small time, Tohoku Math. J., Vol. 46, 1994, pp. 443-456. Zbl0818.60074MR1301283
  18. [18] Y. Ishikawa, On the upper bound of the density for truncated stable processes in small time, Potential Analysis, to appear. Zbl0878.60056MR1436820
  19. [19] J. Jacod and A.N. Shiryaev, Limit theorems for stochastic processes, Grundlehren der math. Wissenschaften, Band 288, Springer-Verlag, Berlin, 1987. Zbl0635.60021MR959133
  20. [20] S. Kusuoka, Theory and application of Malliavin calculus (in Japanese), Sugaku (Math. Soc. Japan), Vol. 41, 1989, pp. 154-165. Zbl0698.60045
  21. [21] S. Kusuoka, Stochastic analysis as infinite dimensional analysis (in Japanese), Sugaku (Math. Soc. Japan), Vol. 45, 1994, pp. 289-298. Zbl0889.60061MR1256469
  22. [22] R. Léandre, Densité en temps petit d'un processus de sauts, Séminaire de Proba., XXI, Lecture Notes in Math., Vol. 1297, Springer-Verlag, Berlin, 1987, pp. 81-99. Zbl0616.60078MR941977
  23. [23] R. Léandre, Minoration en temps petit de la densité d'une diffusion dégénérée, J. Funct. Anal., Vol. 74, 1987, pp. 399-414. Zbl0637.58034MR904825
  24. [24] R. Léandre, Régularité de processus de sauts dégénérés (II), Ann. Inst. H. Poincaré Probabilités, Vol. 24, 1988, pp. 209-236. Zbl0669.60068MR953118
  25. [25] R. Léandre, Applications quantitatives et geometriques du calcul de Malliavin, in Stochastic Analysis (M. Métivier and S. Watanabe, eds.), Lecture Notes in Math., Vol. 1322, Springer-Verlag, Berlin, 1988, pp. 109-133. Zbl0666.60014MR962867
  26. [26] R. Léandre and F. Russo, Estimation de Varadhan pour des diffusions à deux paramètres, Probab. Th. Rel. Fields, Vol. 84, 1990, pp. 429-451. Zbl0665.60057MR1042059
  27. [27] R. Léandre, A simple proof for a large deviation theorem, Proceeding of Conference of D. Nualart. Zbl0789.60023
  28. [28] J.-P. Lepeltier and B. Marchal, Problème des martingales et équations différentielles stochastiques associées à un opérateur intégro-différentiel, Ann. Inst. H. Poincaré Probabilités, Vol. 12, 1976, pp. 43-103. Zbl0345.60029MR413288
  29. [29] J. Lynch and J. Sethuraman, Large deviations for processes with independent increments, Ann. Prob., Vol. 15, 1987, pp. 610-627. Zbl0624.60045MR885133
  30. [30] J.R. Norris, Integration by parts for jump processes, in Séminaire de Proba., XXII (J. Azéma, P.A.Meyer and M. Yor, eds.), Lecture Notes in Math., Vol. 1321, Springer-Verlag, Berlin, 1988, pp. 271-315. Zbl0649.60080MR960534
  31. [31 J.J. Prat, Résolution de l'équation de Schrödinger par intégration stochastique du champ magnétique, Probab. Th. Rel. Fields, Vol. 95, 1993, pp. 217-235. Zbl0792.60054MR1214088
  32. [32] K. Sato, Additive Processes (in Japanese), Kinokuniya, Tokyo, 1990. 
  33. [33] J.M. Stoyanov, Counterexamples in Probability, John Wiley ans Sons, New York, 1987. Zbl0629.60001MR930671
  34. [34] S. Watanabe, Stochastic analysis and its application (in Japanese), Sugaku (Math. Soc. Japan), Vol. 42, 1990, pp. 97-110. Zbl0796.60058MR1060090

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.