Multiplier transformations on spaces
Studia Mathematica (1998)
- Volume: 131, Issue: 2, page 189-204
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topChen, Daning, and Fan, Dashan. "Multiplier transformations on $H^{p}$ spaces." Studia Mathematica 131.2 (1998): 189-204. <http://eudml.org/doc/216575>.
@article{Chen1998,
abstract = {The authors obtain some multiplier theorems on $H^p$ spaces analogous to the classical $L^p$ multiplier theorems of de Leeuw. The main result is that a multiplier operator $(Tf)^(x) = λ(x)f̂(x)$$(λ ∈ C(ℝ^n))$ is bounded on $H^p(ℝ^n)$ if and only if the restriction $\{λ(εm)\}_\{m∈Λ\}$ is an $H^p(T^n)$ bounded multiplier uniformly for ε>0, where Λ is the integer lattice in $ℝ^n$.},
author = {Chen, Daning, Fan, Dashan},
journal = {Studia Mathematica},
keywords = {multiplier operator; bounded operator},
language = {eng},
number = {2},
pages = {189-204},
title = {Multiplier transformations on $H^\{p\}$ spaces},
url = {http://eudml.org/doc/216575},
volume = {131},
year = {1998},
}
TY - JOUR
AU - Chen, Daning
AU - Fan, Dashan
TI - Multiplier transformations on $H^{p}$ spaces
JO - Studia Mathematica
PY - 1998
VL - 131
IS - 2
SP - 189
EP - 204
AB - The authors obtain some multiplier theorems on $H^p$ spaces analogous to the classical $L^p$ multiplier theorems of de Leeuw. The main result is that a multiplier operator $(Tf)^(x) = λ(x)f̂(x)$$(λ ∈ C(ℝ^n))$ is bounded on $H^p(ℝ^n)$ if and only if the restriction ${λ(εm)}_{m∈Λ}$ is an $H^p(T^n)$ bounded multiplier uniformly for ε>0, where Λ is the integer lattice in $ℝ^n$.
LA - eng
KW - multiplier operator; bounded operator
UR - http://eudml.org/doc/216575
ER -
References
top- [1] P. Auscher and M. J. Carro, On relations between operators on , and , Studia Math. 101 (1990), 165-182.
- [2] D. Chen, Multipliers on certain function spaces, Ph.D. thesis, Univ. of Wisconsin-Milwaukee, 1998.
- [3] D. Fan, Hardy spaces on compact Lie groups, Ph.D. thesis, Washington University, St. Louis, 1990.
- [4] C. Fefferman and E. M. Stein, spaces of several variables, Acta Math. 129 (1972), 137-193. Zbl0257.46078
- [5] D. Goldberg, A local version of real Hardy spaces, ibid. 46 (1979), 27-42. Zbl0409.46060
- [6] C. Kenig and P. Thomas, Maximal operators defined by Fourier multipliers, Studia Math. 68 (1980), 79-83. Zbl0442.42013
- [7] S. Krantz, Fractional integration on Hardy spaces, ibid. 73 (1982), 87-94. Zbl0504.47034
- [8] K. de Leeuw, On multipliers, Ann. of Math. 91 (1965), 364-379.
- [9] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971. Zbl0232.42007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.