Weighted endpoint estimates for commutators of multilinear fractional integral operators
Xuefang Yan; Limei Xue; Wenming Li
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 2, page 347-359
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topYan, Xuefang, Xue, Limei, and Li, Wenming. "Weighted endpoint estimates for commutators of multilinear fractional integral operators." Czechoslovak Mathematical Journal 62.2 (2012): 347-359. <http://eudml.org/doc/246320>.
@article{Yan2012,
abstract = {Let $m$ be a positive integer, $0<\alpha <mn$, $\vec\{b\}=(b_\{1\},\cdots ,b_\{m\})\in \{\rm BMO\}^m$. We give sufficient conditions on weights for the commutators of multilinear fractional integral operators $\mathcal \{I\}^\{\vec\{b\}\}_\{\alpha \}$ to satisfy a weighted endpoint inequality which extends the result in D. Cruz-Uribe, A. Fiorenza: Weighted endpoint estimates for commutators of fractional integrals, Czech. Math. J. 57 (2007), 153–160. We also give a weighted strong type inequality which improves the result in X. Chen, Q. Xue: Weighted estimates for a class of multilinear fractional type operators, J. Math. Anal. Appl., 362, (2010), 355–373.},
author = {Yan, Xuefang, Xue, Limei, Li, Wenming},
journal = {Czechoslovak Mathematical Journal},
keywords = {multilinear fractional integral operators; commutator; BMO; weight; maximal operators; multilinear fractional integral operator; commutator; BMO; maximal operator},
language = {eng},
number = {2},
pages = {347-359},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weighted endpoint estimates for commutators of multilinear fractional integral operators},
url = {http://eudml.org/doc/246320},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Yan, Xuefang
AU - Xue, Limei
AU - Li, Wenming
TI - Weighted endpoint estimates for commutators of multilinear fractional integral operators
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 2
SP - 347
EP - 359
AB - Let $m$ be a positive integer, $0<\alpha <mn$, $\vec{b}=(b_{1},\cdots ,b_{m})\in {\rm BMO}^m$. We give sufficient conditions on weights for the commutators of multilinear fractional integral operators $\mathcal {I}^{\vec{b}}_{\alpha }$ to satisfy a weighted endpoint inequality which extends the result in D. Cruz-Uribe, A. Fiorenza: Weighted endpoint estimates for commutators of fractional integrals, Czech. Math. J. 57 (2007), 153–160. We also give a weighted strong type inequality which improves the result in X. Chen, Q. Xue: Weighted estimates for a class of multilinear fractional type operators, J. Math. Anal. Appl., 362, (2010), 355–373.
LA - eng
KW - multilinear fractional integral operators; commutator; BMO; weight; maximal operators; multilinear fractional integral operator; commutator; BMO; maximal operator
UR - http://eudml.org/doc/246320
ER -
References
top- Bernardis, A., Gorosito, O., Pradolini, G., 10.1007/s11118-010-9211-z, Potential Anal. 35 (2011), 253-274. (2011) MR2832577DOI10.1007/s11118-010-9211-z
- Chen, X., Xue, Q., 10.1016/j.jmaa.2009.08.022, J. Math. Anal. Appl. 362 (2010), 355-373. (2010) Zbl1200.26023MR2557692DOI10.1016/j.jmaa.2009.08.022
- Christ, M., Journé, J.-L., 10.1007/BF02392554, Acta Math. 159 (1987), 51-80. (1987) Zbl0645.42017MR0906525DOI10.1007/BF02392554
- Cruz-Uribe, D., Fiorenza, A., 10.5565/PUBLMAT_47103_05, Publ. Mat., Barc. 47 (2003), 103-131. (2003) Zbl1035.42015MR1970896DOI10.5565/PUBLMAT_47103_05
- Cruz-Uribe, D., Fiorenza, A., 10.1007/s10587-007-0051-y, Czech. Math. J. 57 (2007), 153-160. (2007) Zbl1174.42013MR2309956DOI10.1007/s10587-007-0051-y
- Fefferman, C., Stein, E., 10.1007/BF02392215, Acta Math. 129 (1972), 137-193. (1972) MR0447953DOI10.1007/BF02392215
- Grafakos, L., 10.4064/sm-102-1-49-56, Stud. Math. 102 (1992), 49-56. (1992) Zbl0808.42014MR1164632DOI10.4064/sm-102-1-49-56
- Grafakos, L., Kalton, N., 10.1007/PL00004426, Math. Ann. 319 (2001), 151-180. (2001) Zbl0982.46018MR1812822DOI10.1007/PL00004426
- Grafakos, L., Torres, R. H., 10.1006/aima.2001.2028, Adv. Math. 165 (2002), 124-164. (2002) Zbl1032.42020MR1880324DOI10.1006/aima.2001.2028
- Grafakos, L., Torres, R. H., 10.1512/iumj.2002.51.2114, Indiana Univ. Math. J. 51 (2002), 1261-1276. (2002) Zbl1033.42010MR1947875DOI10.1512/iumj.2002.51.2114
- Kenig, C. E., Stein, E. M., 10.4310/MRL.1999.v6.n1.a1, Math. Res. Lett. 6 (1999), 1-15. (1999) Zbl0952.42005MR1682725DOI10.4310/MRL.1999.v6.n1.a1
- Lerner, A. K., Ombrosi, S., Pérez, C., Torres, R. H., Trujillo-González, R., 10.1016/j.aim.2008.10.014, Adv. Math. 220 (2009), 1222-1264. (2009) Zbl1160.42009MR2483720DOI10.1016/j.aim.2008.10.014
- Moen, K., 10.1007/BF03191210, Collect. Math. 60 (2009), 213-238. (2009) Zbl1172.26319MR2514845DOI10.1007/BF03191210
- Pradolini, G., 10.1016/j.jmaa.2010.02.008, J. Math. Anal. Appl. 367 (2010), 640-656. (2010) Zbl1198.42011MR2607287DOI10.1016/j.jmaa.2010.02.008
- Pérez, C., Pradolini, G., 10.1307/mmj/1008719033, Mich. Math. J. 49 (2001), 23-37. (2001) Zbl1010.42007MR1827073DOI10.1307/mmj/1008719033
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.