Weighted endpoint estimates for commutators of multilinear fractional integral operators

Xuefang Yan; Limei Xue; Wenming Li

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 2, page 347-359
  • ISSN: 0011-4642

Abstract

top
Let m be a positive integer, 0 < α < m n , b = ( b 1 , , b m ) BMO m . We give sufficient conditions on weights for the commutators of multilinear fractional integral operators α b to satisfy a weighted endpoint inequality which extends the result in D. Cruz-Uribe, A. Fiorenza: Weighted endpoint estimates for commutators of fractional integrals, Czech. Math. J. 57 (2007), 153–160. We also give a weighted strong type inequality which improves the result in X. Chen, Q. Xue: Weighted estimates for a class of multilinear fractional type operators, J. Math. Anal. Appl., 362, (2010), 355–373.

How to cite

top

Yan, Xuefang, Xue, Limei, and Li, Wenming. "Weighted endpoint estimates for commutators of multilinear fractional integral operators." Czechoslovak Mathematical Journal 62.2 (2012): 347-359. <http://eudml.org/doc/246320>.

@article{Yan2012,
abstract = {Let $m$ be a positive integer, $0<\alpha <mn$, $\vec\{b\}=(b_\{1\},\cdots ,b_\{m\})\in \{\rm BMO\}^m$. We give sufficient conditions on weights for the commutators of multilinear fractional integral operators $\mathcal \{I\}^\{\vec\{b\}\}_\{\alpha \}$ to satisfy a weighted endpoint inequality which extends the result in D. Cruz-Uribe, A. Fiorenza: Weighted endpoint estimates for commutators of fractional integrals, Czech. Math. J. 57 (2007), 153–160. We also give a weighted strong type inequality which improves the result in X. Chen, Q. Xue: Weighted estimates for a class of multilinear fractional type operators, J. Math. Anal. Appl., 362, (2010), 355–373.},
author = {Yan, Xuefang, Xue, Limei, Li, Wenming},
journal = {Czechoslovak Mathematical Journal},
keywords = {multilinear fractional integral operators; commutator; BMO; weight; maximal operators; multilinear fractional integral operator; commutator; BMO; maximal operator},
language = {eng},
number = {2},
pages = {347-359},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weighted endpoint estimates for commutators of multilinear fractional integral operators},
url = {http://eudml.org/doc/246320},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Yan, Xuefang
AU - Xue, Limei
AU - Li, Wenming
TI - Weighted endpoint estimates for commutators of multilinear fractional integral operators
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 2
SP - 347
EP - 359
AB - Let $m$ be a positive integer, $0<\alpha <mn$, $\vec{b}=(b_{1},\cdots ,b_{m})\in {\rm BMO}^m$. We give sufficient conditions on weights for the commutators of multilinear fractional integral operators $\mathcal {I}^{\vec{b}}_{\alpha }$ to satisfy a weighted endpoint inequality which extends the result in D. Cruz-Uribe, A. Fiorenza: Weighted endpoint estimates for commutators of fractional integrals, Czech. Math. J. 57 (2007), 153–160. We also give a weighted strong type inequality which improves the result in X. Chen, Q. Xue: Weighted estimates for a class of multilinear fractional type operators, J. Math. Anal. Appl., 362, (2010), 355–373.
LA - eng
KW - multilinear fractional integral operators; commutator; BMO; weight; maximal operators; multilinear fractional integral operator; commutator; BMO; maximal operator
UR - http://eudml.org/doc/246320
ER -

References

top
  1. Bernardis, A., Gorosito, O., Pradolini, G., 10.1007/s11118-010-9211-z, Potential Anal. 35 (2011), 253-274. (2011) MR2832577DOI10.1007/s11118-010-9211-z
  2. Chen, X., Xue, Q., 10.1016/j.jmaa.2009.08.022, J. Math. Anal. Appl. 362 (2010), 355-373. (2010) Zbl1200.26023MR2557692DOI10.1016/j.jmaa.2009.08.022
  3. Christ, M., Journé, J.-L., 10.1007/BF02392554, Acta Math. 159 (1987), 51-80. (1987) Zbl0645.42017MR0906525DOI10.1007/BF02392554
  4. Cruz-Uribe, D., Fiorenza, A., 10.5565/PUBLMAT_47103_05, Publ. Mat., Barc. 47 (2003), 103-131. (2003) Zbl1035.42015MR1970896DOI10.5565/PUBLMAT_47103_05
  5. Cruz-Uribe, D., Fiorenza, A., 10.1007/s10587-007-0051-y, Czech. Math. J. 57 (2007), 153-160. (2007) Zbl1174.42013MR2309956DOI10.1007/s10587-007-0051-y
  6. Fefferman, C., Stein, E., 10.1007/BF02392215, Acta Math. 129 (1972), 137-193. (1972) MR0447953DOI10.1007/BF02392215
  7. Grafakos, L., 10.4064/sm-102-1-49-56, Stud. Math. 102 (1992), 49-56. (1992) Zbl0808.42014MR1164632DOI10.4064/sm-102-1-49-56
  8. Grafakos, L., Kalton, N., 10.1007/PL00004426, Math. Ann. 319 (2001), 151-180. (2001) Zbl0982.46018MR1812822DOI10.1007/PL00004426
  9. Grafakos, L., Torres, R. H., 10.1006/aima.2001.2028, Adv. Math. 165 (2002), 124-164. (2002) Zbl1032.42020MR1880324DOI10.1006/aima.2001.2028
  10. Grafakos, L., Torres, R. H., 10.1512/iumj.2002.51.2114, Indiana Univ. Math. J. 51 (2002), 1261-1276. (2002) Zbl1033.42010MR1947875DOI10.1512/iumj.2002.51.2114
  11. Kenig, C. E., Stein, E. M., 10.4310/MRL.1999.v6.n1.a1, Math. Res. Lett. 6 (1999), 1-15. (1999) Zbl0952.42005MR1682725DOI10.4310/MRL.1999.v6.n1.a1
  12. Lerner, A. K., Ombrosi, S., Pérez, C., Torres, R. H., Trujillo-González, R., 10.1016/j.aim.2008.10.014, Adv. Math. 220 (2009), 1222-1264. (2009) Zbl1160.42009MR2483720DOI10.1016/j.aim.2008.10.014
  13. Moen, K., 10.1007/BF03191210, Collect. Math. 60 (2009), 213-238. (2009) Zbl1172.26319MR2514845DOI10.1007/BF03191210
  14. Pradolini, G., 10.1016/j.jmaa.2010.02.008, J. Math. Anal. Appl. 367 (2010), 640-656. (2010) Zbl1198.42011MR2607287DOI10.1016/j.jmaa.2010.02.008
  15. Pérez, C., Pradolini, G., 10.1307/mmj/1008719033, Mich. Math. J. 49 (2001), 23-37. (2001) Zbl1010.42007MR1827073DOI10.1307/mmj/1008719033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.