Strictly ergodic Toeplitz flows with positive entropies and trivial centralizers
Wojciech Bułatek; Jan Kwiatkowski
Studia Mathematica (1992)
- Volume: 103, Issue: 2, page 133-142
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topBułatek, Wojciech, and Kwiatkowski, Jan. "Strictly ergodic Toeplitz flows with positive entropies and trivial centralizers." Studia Mathematica 103.2 (1992): 133-142. <http://eudml.org/doc/215941>.
@article{Bułatek1992,
abstract = {A class of strictly ergodic Toeplitz flows with positive entropies and trivial topological centralizers is presented.},
author = {Bułatek, Wojciech, Kwiatkowski, Jan},
journal = {Studia Mathematica},
keywords = {Toeplitz flows; entropy; positive entropy; trivial topological centralizers; strictly ergodic},
language = {eng},
number = {2},
pages = {133-142},
title = {Strictly ergodic Toeplitz flows with positive entropies and trivial centralizers},
url = {http://eudml.org/doc/215941},
volume = {103},
year = {1992},
}
TY - JOUR
AU - Bułatek, Wojciech
AU - Kwiatkowski, Jan
TI - Strictly ergodic Toeplitz flows with positive entropies and trivial centralizers
JO - Studia Mathematica
PY - 1992
VL - 103
IS - 2
SP - 133
EP - 142
AB - A class of strictly ergodic Toeplitz flows with positive entropies and trivial topological centralizers is presented.
LA - eng
KW - Toeplitz flows; entropy; positive entropy; trivial topological centralizers; strictly ergodic
UR - http://eudml.org/doc/215941
ER -
References
top- [1] C. Grillenberger, Constructions of strictly ergodic systems I Given entropy, Z. Wahrsch. Verw. Gebiete 25 (1970), 323-334. Zbl0253.28004
- [2] D. Newton, On canonical factors of ergodic dynamical systems, J. London Math. Soc. (2) 19 (1979), 129-136. Zbl0425.28012
- [3] P. Walters, Affine transformations and coalescence, Math. Systems Theory 8 (1) (1974), 33-44. Zbl0299.22008
- [4] S. Williams, Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete 67 (1984), 95-107. Zbl0584.28007
Citations in EuDML Documents
top- François Blanchard, Jan Kwiatkowski, Minimal self-joinings and positive topological entropy II
- T. Downarowicz, J. Kwiatkowski, Y. Lacroix, A criterion for Toeplitz flows to be topologically isomorphic and applications
- T. Downarowicz, Y. Lacroix, A non-regular Toeplitz flow with preset pure point spectrum
- A. Iwanik, Toeplitz flows with pure point spectrum
- T. Downarowicz, Y. Lacroix, Almost 1-1 extensions of Furstenberg-Weiss type and applications to Toeplitz flows
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.