Strictly ergodic Toeplitz flows with positive entropies and trivial centralizers

Wojciech Bułatek; Jan Kwiatkowski

Studia Mathematica (1992)

  • Volume: 103, Issue: 2, page 133-142
  • ISSN: 0039-3223

Abstract

top
A class of strictly ergodic Toeplitz flows with positive entropies and trivial topological centralizers is presented.

How to cite

top

Bułatek, Wojciech, and Kwiatkowski, Jan. "Strictly ergodic Toeplitz flows with positive entropies and trivial centralizers." Studia Mathematica 103.2 (1992): 133-142. <http://eudml.org/doc/215941>.

@article{Bułatek1992,
abstract = {A class of strictly ergodic Toeplitz flows with positive entropies and trivial topological centralizers is presented.},
author = {Bułatek, Wojciech, Kwiatkowski, Jan},
journal = {Studia Mathematica},
keywords = {Toeplitz flows; entropy; positive entropy; trivial topological centralizers; strictly ergodic},
language = {eng},
number = {2},
pages = {133-142},
title = {Strictly ergodic Toeplitz flows with positive entropies and trivial centralizers},
url = {http://eudml.org/doc/215941},
volume = {103},
year = {1992},
}

TY - JOUR
AU - Bułatek, Wojciech
AU - Kwiatkowski, Jan
TI - Strictly ergodic Toeplitz flows with positive entropies and trivial centralizers
JO - Studia Mathematica
PY - 1992
VL - 103
IS - 2
SP - 133
EP - 142
AB - A class of strictly ergodic Toeplitz flows with positive entropies and trivial topological centralizers is presented.
LA - eng
KW - Toeplitz flows; entropy; positive entropy; trivial topological centralizers; strictly ergodic
UR - http://eudml.org/doc/215941
ER -

References

top
  1. [1] C. Grillenberger, Constructions of strictly ergodic systems I Given entropy, Z. Wahrsch. Verw. Gebiete 25 (1970), 323-334. Zbl0253.28004
  2. [2] D. Newton, On canonical factors of ergodic dynamical systems, J. London Math. Soc. (2) 19 (1979), 129-136. Zbl0425.28012
  3. [3] P. Walters, Affine transformations and coalescence, Math. Systems Theory 8 (1) (1974), 33-44. Zbl0299.22008
  4. [4] S. Williams, Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete 67 (1984), 95-107. Zbl0584.28007

Citations in EuDML Documents

top
  1. François Blanchard, Jan Kwiatkowski, Minimal self-joinings and positive topological entropy II
  2. T. Downarowicz, J. Kwiatkowski, Y. Lacroix, A criterion for Toeplitz flows to be topologically isomorphic and applications
  3. T. Downarowicz, Y. Lacroix, A non-regular Toeplitz flow with preset pure point spectrum
  4. A. Iwanik, Toeplitz flows with pure point spectrum
  5. T. Downarowicz, Y. Lacroix, Almost 1-1 extensions of Furstenberg-Weiss type and applications to Toeplitz flows

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.