Hausdorff and conformal measures for expanding piecewise monotonic maps of the interval
Studia Mathematica (1992)
- Volume: 103, Issue: 2, page 191-206
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Denker and M. Urbański, On the existence of conformal measures, Trans. Amer. Math. Soc. 328 (1991), 563-587. Zbl0745.58031
- [2] M. Denker and M. Urbański, Hausdorff and conformal measures on Julia sets with a rationally indifferent periodic point, J. London Math. Soc. 43 (1991), 107-118. Zbl0734.28007
- [3] M. Denker and M. Urbański, Hausdorff measures on Julia sets of subexpanding rational maps, preprint, 1990.
- [4] K. J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1985. Zbl0587.28004
- [5] F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Israel J. Math. 34 (1979), 213-237. Zbl0422.28015
- [6] F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy II, ibid. 38 (1981), 107-115. Zbl0456.28006
- [7] F. Hofbauer, Piecewise invertible dynamical systems, Probab. Theory Related Fields 72 (1986), 359-386. Zbl0578.60069
- [8] F. Hofbauer, Hausdorff dimension and pressure for piecewise monotonic maps of the interval, J. London Math. Soc., to appear. Zbl0725.54031
- [9] P. Raith, Hausdorff dimension for piecewise monotonic maps, Studia Math. 94 (1989), 17-33. Zbl0687.58013
- [10] P. Walters, An Introduction to Ergodic Theory, Springer, 1982. Zbl0475.28009