# Isometries of Musielak-Orlicz spaces II

J. Jamison; A. Kamińska; Pei-Kee Lin

Studia Mathematica (1993)

- Volume: 104, Issue: 1, page 75-89
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topJamison, J., Kamińska, A., and Lin, Pei-Kee. "Isometries of Musielak-Orlicz spaces II." Studia Mathematica 104.1 (1993): 75-89. <http://eudml.org/doc/215960>.

@article{Jamison1993,

abstract = {A characterization of isometries of complex Musielak-Orlicz spaces $L_Φ$ is given. If $L_Φ$ is not a Hilbert space and $U : L_Φ → L_Φ$ is a surjective isometry, then there exist a regular set isomorphism τ from (T,Σ,μ) onto itself and a measurable function w such that U(f) = w ·(f ∘ τ) for all $f ∈ L_Φ$. Isometries of real Nakano spaces, a particular case of Musielak-Orlicz spaces, are also studied.},

author = {Jamison, J., Kamińska, A., Lin, Pei-Kee},

journal = {Studia Mathematica},

keywords = {isometries of complex Musielak-Orlicz spaces; surjective isometry; regular set isomorphism; real Nakano spaces},

language = {eng},

number = {1},

pages = {75-89},

title = {Isometries of Musielak-Orlicz spaces II},

url = {http://eudml.org/doc/215960},

volume = {104},

year = {1993},

}

TY - JOUR

AU - Jamison, J.

AU - Kamińska, A.

AU - Lin, Pei-Kee

TI - Isometries of Musielak-Orlicz spaces II

JO - Studia Mathematica

PY - 1993

VL - 104

IS - 1

SP - 75

EP - 89

AB - A characterization of isometries of complex Musielak-Orlicz spaces $L_Φ$ is given. If $L_Φ$ is not a Hilbert space and $U : L_Φ → L_Φ$ is a surjective isometry, then there exist a regular set isomorphism τ from (T,Σ,μ) onto itself and a measurable function w such that U(f) = w ·(f ∘ τ) for all $f ∈ L_Φ$. Isometries of real Nakano spaces, a particular case of Musielak-Orlicz spaces, are also studied.

LA - eng

KW - isometries of complex Musielak-Orlicz spaces; surjective isometry; regular set isomorphism; real Nakano spaces

UR - http://eudml.org/doc/215960

ER -

## References

top- [1] S. Banach, Theory of Linear Operations, North-Holland, 1987. Zbl0613.46001
- [2] E. Berkson and H. Porta, Hermitian operators and one-parameter groups of isometries in Hardy spaces, Trans. Amer. Math. Soc. 185 (1973), 331-344. Zbl0278.46024
- [3] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge University Press, 1971. Zbl0207.44802
- [4] R. Fleming and J. E. Jamison, Isometries on certain Banach spaces, J. London Math. Soc. (2) 9 (1974), 363-371. Zbl0288.47027
- [5] R. Fleming, J. E. Jamison and A. Kamińska, Isometries of Musielak-Orlicz spaces, in: Proceedings of the Conference on Function Spaces, Edwardsville 1990, Marcel Dekker, 1992, 139-154. Zbl0769.46018
- [6] J. E. Jamison and I. Loomis, Isometries of Orlicz spaces of vector valued functions, Math. Z. 193 (1986), 363-371.
- [7] N. J. Kalton and G. V. Wood, Orthonormal systems in Banach spaces and their applications, Math. Proc. Cambridge Philos. Soc. 79 (1976), 493-510. Zbl0327.46022
- [8] A. Kamińska, Some convexity properties of Musielak-Orlicz spaces of Bochner type, Rend. Circ. Mat. Palermo (2) Suppl. 10 (1985), 63-73. Zbl0609.46015
- [9] A. Kamińska, Isometries of Orlicz spaces equipped with the Orlicz norm, Rocky Mountain J. Math., to appear. Zbl0834.46019
- [10] W. Kozlowski, Modular Function Spaces, Marcel Dekker, New York 1988. Zbl0661.46023
- [11] M. A. Krasnosel'skiǐ and Ya. B. Rutickiǐ, Convex Functions and Orlicz Spaces, Noordhoff, Groningen 1961.
- [12] G. Lumer, On the isometries of reflexive Orlicz spaces, Ann. Inst. Fourier (Grenoble) 13 (1) (1963), 99-109. Zbl0189.43201
- [13] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, 1983.
- [14] H. Nakano, Topology and Linear Spaces, Nihonbashi, Tokyo 1951.
- [15] A. R. Sourour, The isometries of ${L}^{p}(\Omega ,X)$, J. Funct. Anal. 30 (1978), 276-285. Zbl0396.47020
- [16] M. G. Zaǐdenberg, Groups of isometries of Orlicz spaces, Soviet Math. Dokl. 17 (1976), 432-436. Zbl0345.46028
- [17] M. G. Zaǐdenberg, On isometric classification of symmetric spaces, ibid. 18 (1977), 636-640. Zbl0381.46016

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.