Markov's property of the Cantor ternary set

Leokadia Białas; Alexander Volberg

Studia Mathematica (1993)

  • Volume: 104, Issue: 3, page 259-268
  • ISSN: 0039-3223

Abstract

top
We prove that the Cantor ternary set E satisfies the classical Markov inequality (see [Ma]): for each polynomial p of degree at most n (n = 0, 1, 2,...) (M) | p ' ( x ) | M n m s u p E | p | for x ∈ E, where M and m are positive constants depending only on E.

How to cite

top

Białas, Leokadia, and Volberg, Alexander. "Markov's property of the Cantor ternary set." Studia Mathematica 104.3 (1993): 259-268. <http://eudml.org/doc/215974>.

@article{Białas1993,
abstract = {We prove that the Cantor ternary set E satisfies the classical Markov inequality (see [Ma]): for each polynomial p of degree at most n (n = 0, 1, 2,...) (M) $|p^\{\prime \}(x)| ≤ Mn^\{m\} sup_\{E\}|p|$ for x ∈ E, where M and m are positive constants depending only on E.},
author = {Białas, Leokadia, Volberg, Alexander},
journal = {Studia Mathematica},
keywords = {Markov inequality},
language = {eng},
number = {3},
pages = {259-268},
title = {Markov's property of the Cantor ternary set},
url = {http://eudml.org/doc/215974},
volume = {104},
year = {1993},
}

TY - JOUR
AU - Białas, Leokadia
AU - Volberg, Alexander
TI - Markov's property of the Cantor ternary set
JO - Studia Mathematica
PY - 1993
VL - 104
IS - 3
SP - 259
EP - 268
AB - We prove that the Cantor ternary set E satisfies the classical Markov inequality (see [Ma]): for each polynomial p of degree at most n (n = 0, 1, 2,...) (M) $|p^{\prime }(x)| ≤ Mn^{m} sup_{E}|p|$ for x ∈ E, where M and m are positive constants depending only on E.
LA - eng
KW - Markov inequality
UR - http://eudml.org/doc/215974
ER -

References

top
  1. [Fe] M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), 228-249. 
  2. [H-K] W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Vol. I, Academic Press, 1976. Zbl0419.31001
  3. [La] N. S. Landkof, Foundations of Modern Potential Theory, Springer, 1972. Zbl0253.31001
  4. [Lj1] F. Leja, Sur les suites de polynômes, les ensembles fermés et la fonction de Green, Ann. Soc. Polon. Math. 12 (1933), 57-71. Zbl61.0356.08
  5. [Lj2] F. Leja, Theory of Analytic Functions, PWN, Warszawa 1957 (in Polish). 
  6. [M-V] N. Makarov and A. Volberg, On the harmonic measure of discontinuous fractals, LOMI preprint E-6-86, Leningrad 1986. 
  7. [Ma] A. A. Markov, On a problem posed by D. I. Mendeleev, Izv. Akad. Nauk St-Petersbourg 62 (1889), 1-24 (in Russian). 
  8. [Pa-Pl 1] W. Pawłucki and W. Pleśniak, Markov’s inequality and C functions on sets with polynomial cusps, Math. Ann. 275 (3) (1986), 467-480. Zbl0579.32020
  9. [Pa-Pl 2] W. Pawłucki and W. Pleśniak, Extension of C functions from sets with polynomial cusps, Studia Math. 88 (1988), 279-287. Zbl0778.26010
  10. [Pl 1] W. Pleśniak, Quasianalytic functions in the sense of Bernstein, Dissertationes Math. 147 (1977). 
  11. [Pl 2] W. Pleśniak, A Cantor regular set which does not have Markov's property, Ann. Polon. Math. 51 (1990), 269-274. Zbl0739.30008
  12. [Pl 3] W. Pleśniak, Compact subsets of n preserving Markov’s inequality, Mat. Vesnik 40 (1988), 295-300. Zbl0702.32007
  13. [Pl 4] W. Pleśniak, Markov’s inequality and the existence of an extension operator for C functions, J. Approx. Theory 61 (1990), 106-117. 
  14. [R-S] Q. I. Rahman and G. Schmeisser, Les inégalités de Markoff et de Bernstein, Les Presses de l'Université de Montréal, 1983. 
  15. [Si 1] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (2) (1962), 322-357. Zbl0111.08102
  16. [Si 2] J. Siciak, Degree of convergence of some sequences in the conformal mapping theory, Colloq. Math. 16 (1967), 49-59. 
  17. [Si 3] J. Siciak, An example of a Cantor set preserving Markov's inequality, manuscript, Jagiellonian University, Kraków 1987. 
  18. [Ts] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo 1959. Zbl0087.28401

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.