Markov's property of the Cantor ternary set

Leokadia Białas; Alexander Volberg

Studia Mathematica (1993)

  • Volume: 104, Issue: 3, page 259-268
  • ISSN: 0039-3223

Abstract

top
We prove that the Cantor ternary set E satisfies the classical Markov inequality (see [Ma]): for each polynomial p of degree at most n (n = 0, 1, 2,...) (M) | p ' ( x ) | M n m s u p E | p | for x ∈ E, where M and m are positive constants depending only on E.

How to cite

top

Białas, Leokadia, and Volberg, Alexander. "Markov's property of the Cantor ternary set." Studia Mathematica 104.3 (1993): 259-268. <http://eudml.org/doc/215974>.

@article{Białas1993,
abstract = {We prove that the Cantor ternary set E satisfies the classical Markov inequality (see [Ma]): for each polynomial p of degree at most n (n = 0, 1, 2,...) (M) $|p^\{\prime \}(x)| ≤ Mn^\{m\} sup_\{E\}|p|$ for x ∈ E, where M and m are positive constants depending only on E.},
author = {Białas, Leokadia, Volberg, Alexander},
journal = {Studia Mathematica},
keywords = {Markov inequality},
language = {eng},
number = {3},
pages = {259-268},
title = {Markov's property of the Cantor ternary set},
url = {http://eudml.org/doc/215974},
volume = {104},
year = {1993},
}

TY - JOUR
AU - Białas, Leokadia
AU - Volberg, Alexander
TI - Markov's property of the Cantor ternary set
JO - Studia Mathematica
PY - 1993
VL - 104
IS - 3
SP - 259
EP - 268
AB - We prove that the Cantor ternary set E satisfies the classical Markov inequality (see [Ma]): for each polynomial p of degree at most n (n = 0, 1, 2,...) (M) $|p^{\prime }(x)| ≤ Mn^{m} sup_{E}|p|$ for x ∈ E, where M and m are positive constants depending only on E.
LA - eng
KW - Markov inequality
UR - http://eudml.org/doc/215974
ER -

References

top
  1. [Fe] M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), 228-249. 
  2. [H-K] W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Vol. I, Academic Press, 1976. Zbl0419.31001
  3. [La] N. S. Landkof, Foundations of Modern Potential Theory, Springer, 1972. Zbl0253.31001
  4. [Lj1] F. Leja, Sur les suites de polynômes, les ensembles fermés et la fonction de Green, Ann. Soc. Polon. Math. 12 (1933), 57-71. Zbl61.0356.08
  5. [Lj2] F. Leja, Theory of Analytic Functions, PWN, Warszawa 1957 (in Polish). 
  6. [M-V] N. Makarov and A. Volberg, On the harmonic measure of discontinuous fractals, LOMI preprint E-6-86, Leningrad 1986. 
  7. [Ma] A. A. Markov, On a problem posed by D. I. Mendeleev, Izv. Akad. Nauk St-Petersbourg 62 (1889), 1-24 (in Russian). 
  8. [Pa-Pl 1] W. Pawłucki and W. Pleśniak, Markov’s inequality and C functions on sets with polynomial cusps, Math. Ann. 275 (3) (1986), 467-480. Zbl0579.32020
  9. [Pa-Pl 2] W. Pawłucki and W. Pleśniak, Extension of C functions from sets with polynomial cusps, Studia Math. 88 (1988), 279-287. Zbl0778.26010
  10. [Pl 1] W. Pleśniak, Quasianalytic functions in the sense of Bernstein, Dissertationes Math. 147 (1977). 
  11. [Pl 2] W. Pleśniak, A Cantor regular set which does not have Markov's property, Ann. Polon. Math. 51 (1990), 269-274. Zbl0739.30008
  12. [Pl 3] W. Pleśniak, Compact subsets of n preserving Markov’s inequality, Mat. Vesnik 40 (1988), 295-300. Zbl0702.32007
  13. [Pl 4] W. Pleśniak, Markov’s inequality and the existence of an extension operator for C functions, J. Approx. Theory 61 (1990), 106-117. 
  14. [R-S] Q. I. Rahman and G. Schmeisser, Les inégalités de Markoff et de Bernstein, Les Presses de l'Université de Montréal, 1983. 
  15. [Si 1] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (2) (1962), 322-357. Zbl0111.08102
  16. [Si 2] J. Siciak, Degree of convergence of some sequences in the conformal mapping theory, Colloq. Math. 16 (1967), 49-59. 
  17. [Si 3] J. Siciak, An example of a Cantor set preserving Markov's inequality, manuscript, Jagiellonian University, Kraków 1987. 
  18. [Ts] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo 1959. Zbl0087.28401

NotesEmbed ?

top

You must be logged in to post comments.