An estimate from below for the Markov constant of a Cantor repeller
Banach Center Publications (1995)
- Volume: 31, Issue: 1, page 383-390
- ISSN: 0137-6934
Access Full Article
topHow to cite
topVolberg, Alexander. "An estimate from below for the Markov constant of a Cantor repeller." Banach Center Publications 31.1 (1995): 383-390. <http://eudml.org/doc/262809>.
@article{Volberg1995,
author = {Volberg, Alexander},
journal = {Banach Center Publications},
keywords = {Julia set; Green function; Hausdorff dimension; Markov's inequality},
language = {eng},
number = {1},
pages = {383-390},
title = {An estimate from below for the Markov constant of a Cantor repeller},
url = {http://eudml.org/doc/262809},
volume = {31},
year = {1995},
}
TY - JOUR
AU - Volberg, Alexander
TI - An estimate from below for the Markov constant of a Cantor repeller
JO - Banach Center Publications
PY - 1995
VL - 31
IS - 1
SP - 383
EP - 390
LA - eng
KW - Julia set; Green function; Hausdorff dimension; Markov's inequality
UR - http://eudml.org/doc/262809
ER -
References
top- [1] W. Pawłucki and W. Pleśniak, Extension of functions from sets with polynomial cusps, Studia Math. 88 (1988), 279-287. Zbl0778.26010
- [2] W. Pawłucki and W. Pleśniak, Prolongement de fonctions , C.R. Acad. Sci. Paris Ser. I 304 (1987), 167-168.
- [3] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357. Zbl0111.08102
- [4] L. Białas and A. Volberg, Markov's property of the Cantor ternary set, Studia Math. 104 (1993), 259-268.
- [5] P. Jones and Th. Wolff, Hausdorff dimension of harmonic measure in the plane I, Acta Math. 161 (1988), 133-144.
- [6] A. Volberg, On the dimension of harmonic measure of Cantor repellers, Michigan Math. J. 40 (1993), 239-258. Zbl0797.30022
- [7] A. Zdunik, Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Math. 99 (1990), 627-649. Zbl0820.58038
- [8] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lect. Notes in Math. 470 (1975). Zbl0308.28010
- [9] W. Phillipp and W. Stout, Almost sure invariant principles for partial sums of weakly dependent random variables, Mem. Amer. Math. Soc. 161 (1975).
- [10] I. A. Ibragimov and Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff, Groningen, 1971. Zbl0219.60027
- [11] A. Volberg, On the harmonic measure of self-similar sets on the plane, in: Harmonic Analysis and Discrete Potential Theory, M. Picardello (ed.), Plenum Press, 1991, 267-281.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.