# An estimate from below for the Markov constant of a Cantor repeller

Banach Center Publications (1995)

- Volume: 31, Issue: 1, page 383-390
- ISSN: 0137-6934

## Access Full Article

top## How to cite

topVolberg, Alexander. "An estimate from below for the Markov constant of a Cantor repeller." Banach Center Publications 31.1 (1995): 383-390. <http://eudml.org/doc/262809>.

@article{Volberg1995,

author = {Volberg, Alexander},

journal = {Banach Center Publications},

keywords = {Julia set; Green function; Hausdorff dimension; Markov's inequality},

language = {eng},

number = {1},

pages = {383-390},

title = {An estimate from below for the Markov constant of a Cantor repeller},

url = {http://eudml.org/doc/262809},

volume = {31},

year = {1995},

}

TY - JOUR

AU - Volberg, Alexander

TI - An estimate from below for the Markov constant of a Cantor repeller

JO - Banach Center Publications

PY - 1995

VL - 31

IS - 1

SP - 383

EP - 390

LA - eng

KW - Julia set; Green function; Hausdorff dimension; Markov's inequality

UR - http://eudml.org/doc/262809

ER -

## References

top- [1] W. Pawłucki and W. Pleśniak, Extension of ${C}^{\infty}$ functions from sets with polynomial cusps, Studia Math. 88 (1988), 279-287. Zbl0778.26010
- [2] W. Pawłucki and W. Pleśniak, Prolongement de fonctions ${C}^{\infty}$, C.R. Acad. Sci. Paris Ser. I 304 (1987), 167-168.
- [3] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357. Zbl0111.08102
- [4] L. Białas and A. Volberg, Markov's property of the Cantor ternary set, Studia Math. 104 (1993), 259-268.
- [5] P. Jones and Th. Wolff, Hausdorff dimension of harmonic measure in the plane I, Acta Math. 161 (1988), 133-144.
- [6] A. Volberg, On the dimension of harmonic measure of Cantor repellers, Michigan Math. J. 40 (1993), 239-258. Zbl0797.30022
- [7] A. Zdunik, Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Math. 99 (1990), 627-649. Zbl0820.58038
- [8] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lect. Notes in Math. 470 (1975). Zbl0308.28010
- [9] W. Phillipp and W. Stout, Almost sure invariant principles for partial sums of weakly dependent random variables, Mem. Amer. Math. Soc. 161 (1975).
- [10] I. A. Ibragimov and Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff, Groningen, 1971. Zbl0219.60027
- [11] A. Volberg, On the harmonic measure of self-similar sets on the plane, in: Harmonic Analysis and Discrete Potential Theory, M. Picardello (ed.), Plenum Press, 1991, 267-281.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.