# On the joint spectral radii of commuting Banach algebra elements

Studia Mathematica (1993)

- Volume: 105, Issue: 1, page 93-99
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topSołtysiak, Andrzej. "On the joint spectral radii of commuting Banach algebra elements." Studia Mathematica 105.1 (1993): 93-99. <http://eudml.org/doc/215986>.

@article{Sołtysiak1993,

abstract = {Some inequalities are proved between the geometric joint spectral radius (cf. [3]) and the joint spectral radius as defined in [7] of finite commuting families of Banach algebra elements.},

author = {Sołtysiak, Andrzej},

journal = {Studia Mathematica},

keywords = {geometric joint spectral radius; commuting families of Banach algebra elements},

language = {eng},

number = {1},

pages = {93-99},

title = {On the joint spectral radii of commuting Banach algebra elements},

url = {http://eudml.org/doc/215986},

volume = {105},

year = {1993},

}

TY - JOUR

AU - Sołtysiak, Andrzej

TI - On the joint spectral radii of commuting Banach algebra elements

JO - Studia Mathematica

PY - 1993

VL - 105

IS - 1

SP - 93

EP - 99

AB - Some inequalities are proved between the geometric joint spectral radius (cf. [3]) and the joint spectral radius as defined in [7] of finite commuting families of Banach algebra elements.

LA - eng

KW - geometric joint spectral radius; commuting families of Banach algebra elements

UR - http://eudml.org/doc/215986

ER -

## References

top- [1] M. A. Berger and Y. Wang, Bounded semigroups of matrices, Linear Algebra Appl. 166 (1992), 21-27. Zbl0818.15006
- [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin 1973. Zbl0271.46039
- [3] M. Chō and W. Żelazko, On geometric spectral radius of commuting n-tuples of operators, Hokkaido Math. J. 21 (1992), 251-258. Zbl0784.47004
- [4] R. E. Harte, Spectral mapping theorems, Proc. Roy. Irish Acad. Sect. A 72 (1972), 89-107. Zbl0206.13301
- [5] A. Ya. Khelemskiĭ, Banach and Polynormed Algebras: General Theory, Representations, Homology, Nauka, Moscow 1989 (in Russian). Zbl0688.46025
- [6] V. Müller and A. Sołtysiak, Spectral radius formula for commuting Hilbert space operators, Studia Math. 103 (1992), 329-333. Zbl0812.47004
- [7] G.-C. Rota and W. G. Strang, A note on the joint spectral radius, Indag. Math. 22 (1960), 379-381. Zbl0095.09701
- [8] A. Sołtysiak, On a certain class of subspectra, Comment. Math. Univ. Carolinae 32 (1991), 715-721. Zbl0763.46037

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.