On the joint spectral radii of commuting Banach algebra elements
Studia Mathematica (1993)
- Volume: 105, Issue: 1, page 93-99
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topSołtysiak, Andrzej. "On the joint spectral radii of commuting Banach algebra elements." Studia Mathematica 105.1 (1993): 93-99. <http://eudml.org/doc/215986>.
@article{Sołtysiak1993,
abstract = {Some inequalities are proved between the geometric joint spectral radius (cf. [3]) and the joint spectral radius as defined in [7] of finite commuting families of Banach algebra elements.},
author = {Sołtysiak, Andrzej},
journal = {Studia Mathematica},
keywords = {geometric joint spectral radius; commuting families of Banach algebra elements},
language = {eng},
number = {1},
pages = {93-99},
title = {On the joint spectral radii of commuting Banach algebra elements},
url = {http://eudml.org/doc/215986},
volume = {105},
year = {1993},
}
TY - JOUR
AU - Sołtysiak, Andrzej
TI - On the joint spectral radii of commuting Banach algebra elements
JO - Studia Mathematica
PY - 1993
VL - 105
IS - 1
SP - 93
EP - 99
AB - Some inequalities are proved between the geometric joint spectral radius (cf. [3]) and the joint spectral radius as defined in [7] of finite commuting families of Banach algebra elements.
LA - eng
KW - geometric joint spectral radius; commuting families of Banach algebra elements
UR - http://eudml.org/doc/215986
ER -
References
top- [1] M. A. Berger and Y. Wang, Bounded semigroups of matrices, Linear Algebra Appl. 166 (1992), 21-27. Zbl0818.15006
- [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin 1973. Zbl0271.46039
- [3] M. Chō and W. Żelazko, On geometric spectral radius of commuting n-tuples of operators, Hokkaido Math. J. 21 (1992), 251-258. Zbl0784.47004
- [4] R. E. Harte, Spectral mapping theorems, Proc. Roy. Irish Acad. Sect. A 72 (1972), 89-107. Zbl0206.13301
- [5] A. Ya. Khelemskiĭ, Banach and Polynormed Algebras: General Theory, Representations, Homology, Nauka, Moscow 1989 (in Russian). Zbl0688.46025
- [6] V. Müller and A. Sołtysiak, Spectral radius formula for commuting Hilbert space operators, Studia Math. 103 (1992), 329-333. Zbl0812.47004
- [7] G.-C. Rota and W. G. Strang, A note on the joint spectral radius, Indag. Math. 22 (1960), 379-381. Zbl0095.09701
- [8] A. Sołtysiak, On a certain class of subspectra, Comment. Math. Univ. Carolinae 32 (1991), 715-721. Zbl0763.46037
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.