On the joint spectral radius

Vladimír Müller

Annales Polonici Mathematici (1997)

  • Volume: 66, Issue: 1, page 173-182
  • ISSN: 0066-2216

Abstract

top
We prove the p -spectral radius formula for n-tuples of commuting Banach algebra elements

How to cite

top

Vladimír Müller. "On the joint spectral radius." Annales Polonici Mathematici 66.1 (1997): 173-182. <http://eudml.org/doc/269951>.

@article{VladimírMüller1997,
abstract = {We prove the $_p$-spectral radius formula for n-tuples of commuting Banach algebra elements},
author = {Vladimír Müller},
journal = {Annales Polonici Mathematici},
keywords = {Banach algebra; spectrum; spectral radius; joint spectral radius; -spectral radius formula; -tuples of commuting Banach algebra},
language = {eng},
number = {1},
pages = {173-182},
title = {On the joint spectral radius},
url = {http://eudml.org/doc/269951},
volume = {66},
year = {1997},
}

TY - JOUR
AU - Vladimír Müller
TI - On the joint spectral radius
JO - Annales Polonici Mathematici
PY - 1997
VL - 66
IS - 1
SP - 173
EP - 182
AB - We prove the $_p$-spectral radius formula for n-tuples of commuting Banach algebra elements
LA - eng
KW - Banach algebra; spectrum; spectral radius; joint spectral radius; -spectral radius formula; -tuples of commuting Banach algebra
UR - http://eudml.org/doc/269951
ER -

References

top
  1. [1] M. A. Berger and Y. Wang, Bounded semigroups of matrices, Linear Algebra Appl. 166 (1992), 21-27. Zbl0818.15006
  2. [2] J. W. Bunce, Models for n-tuples of non-commuting operators, J. Funct. Anal. 57 (1984), 21-30. Zbl0558.47004
  3. [3] M. Chō and T. Huruya, On the spectral radius, Proc. Roy. Irish Acad. Sect. A 91 (1991), 39-44. Zbl0776.47004
  4. [4] M. Chō and W. Żelazko, On geometric spectral radius of commuting n-tuples of operators, Hokkaido Math. J. 21 (1992), 251-258. Zbl0784.47004
  5. [5] C.-K. Fong and A. Sołtysiak, Existence of a multiplicative linear functional and joint spectra, Studia Math. 81 (1985), 213-220. Zbl0529.46034
  6. [6] V. Müller and A. Sołtysiak, Spectral radius formula for commuting Hilbert space operators, Studia Math. 103 (1992), 329-333. Zbl0812.47004
  7. [7] P. Rosenthal and A. Sołtysiak, Formulas for the joint spectral radius of non-commuting Banach algebra elements, Proc. Amer. Math. Soc. 123 (1995), 2705-2708. Zbl0849.46034
  8. [8] G.-C. Rota and W. G. Strang, A note on the joint spectral radius, Indag. Math. 22 (1960), 379-381. Zbl0095.09701
  9. [9] A. Sołtysiak, On a certain class of subspectra, Comment. Math. Univ. Carolin. 32 (1991), 715-721. Zbl0763.46037
  10. [10] A. Sołtysiak, On the joint spectral radii of commuting Banach algebra elements, Studia Math. 105 (1993), 93-99. Zbl0811.46047

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.