On the joint spectral radius
Annales Polonici Mathematici (1997)
- Volume: 66, Issue: 1, page 173-182
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topVladimír Müller. "On the joint spectral radius." Annales Polonici Mathematici 66.1 (1997): 173-182. <http://eudml.org/doc/269951>.
@article{VladimírMüller1997,
abstract = {We prove the $_p$-spectral radius formula for n-tuples of commuting Banach algebra elements},
author = {Vladimír Müller},
journal = {Annales Polonici Mathematici},
keywords = {Banach algebra; spectrum; spectral radius; joint spectral radius; -spectral radius formula; -tuples of commuting Banach algebra},
language = {eng},
number = {1},
pages = {173-182},
title = {On the joint spectral radius},
url = {http://eudml.org/doc/269951},
volume = {66},
year = {1997},
}
TY - JOUR
AU - Vladimír Müller
TI - On the joint spectral radius
JO - Annales Polonici Mathematici
PY - 1997
VL - 66
IS - 1
SP - 173
EP - 182
AB - We prove the $_p$-spectral radius formula for n-tuples of commuting Banach algebra elements
LA - eng
KW - Banach algebra; spectrum; spectral radius; joint spectral radius; -spectral radius formula; -tuples of commuting Banach algebra
UR - http://eudml.org/doc/269951
ER -
References
top- [1] M. A. Berger and Y. Wang, Bounded semigroups of matrices, Linear Algebra Appl. 166 (1992), 21-27. Zbl0818.15006
- [2] J. W. Bunce, Models for n-tuples of non-commuting operators, J. Funct. Anal. 57 (1984), 21-30. Zbl0558.47004
- [3] M. Chō and T. Huruya, On the spectral radius, Proc. Roy. Irish Acad. Sect. A 91 (1991), 39-44. Zbl0776.47004
- [4] M. Chō and W. Żelazko, On geometric spectral radius of commuting n-tuples of operators, Hokkaido Math. J. 21 (1992), 251-258. Zbl0784.47004
- [5] C.-K. Fong and A. Sołtysiak, Existence of a multiplicative linear functional and joint spectra, Studia Math. 81 (1985), 213-220. Zbl0529.46034
- [6] V. Müller and A. Sołtysiak, Spectral radius formula for commuting Hilbert space operators, Studia Math. 103 (1992), 329-333. Zbl0812.47004
- [7] P. Rosenthal and A. Sołtysiak, Formulas for the joint spectral radius of non-commuting Banach algebra elements, Proc. Amer. Math. Soc. 123 (1995), 2705-2708. Zbl0849.46034
- [8] G.-C. Rota and W. G. Strang, A note on the joint spectral radius, Indag. Math. 22 (1960), 379-381. Zbl0095.09701
- [9] A. Sołtysiak, On a certain class of subspectra, Comment. Math. Univ. Carolin. 32 (1991), 715-721. Zbl0763.46037
- [10] A. Sołtysiak, On the joint spectral radii of commuting Banach algebra elements, Studia Math. 105 (1993), 93-99. Zbl0811.46047
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.