Sur la convergence radiale des potentiels associés à l'équation de Helmholtz
Alano Ancona; Nicolas Chevallier
Bulletin de la Société Mathématique de France (2000)
- Volume: 128, Issue: 2, page 249-281
- ISSN: 0037-9484
Access Full Article
topHow to cite
topAncona, Alano, and Chevallier, Nicolas. "Sur la convergence radiale des potentiels associés à l'équation de Helmholtz." Bulletin de la Société Mathématique de France 128.2 (2000): 249-281. <http://eudml.org/doc/87828>.
@article{Ancona2000,
author = {Ancona, Alano, Chevallier, Nicolas},
journal = {Bulletin de la Société Mathématique de France},
keywords = {radial limits; potentials; Helmholtz equation; fine limits},
language = {fre},
number = {2},
pages = {249-281},
publisher = {Société mathématique de France},
title = {Sur la convergence radiale des potentiels associés à l'équation de Helmholtz},
url = {http://eudml.org/doc/87828},
volume = {128},
year = {2000},
}
TY - JOUR
AU - Ancona, Alano
AU - Chevallier, Nicolas
TI - Sur la convergence radiale des potentiels associés à l'équation de Helmholtz
JO - Bulletin de la Société Mathématique de France
PY - 2000
PB - Société mathématique de France
VL - 128
IS - 2
SP - 249
EP - 281
LA - fre
KW - radial limits; potentials; Helmholtz equation; fine limits
UR - http://eudml.org/doc/87828
ER -
References
top- [An1] ANCONA (A.). — Théorie du potentiel sur les graphes et les variétés, in École d'été de Probabilités de Saint-Flour XVIII — 1988, Lecture Notes in Math. 1427, Springer-Verlag, 1990, p. 5-112. Zbl0719.60074
- [An2] ANCONA (A.). — Negatively curved manifolds, elliptic operators and the Martin boundary, Ann. of Math., t. 125, 1987, p. 495-536. Zbl0652.31008MR88k:58160
- [An3] ANCONA (A.). — First eigenvalues and comparisons of Green's functions for elliptic operators on manifolds or domains, J. Anal. Math., t. 72, 1997, p. 45-92. Zbl0944.58016MR98i:58212
- [Ber] BERG (C.). — Potential theory on the infinite dimensional torus, Invent. Math., t. 32 (1), 1976, p. 49-100. Zbl0371.31007MR53 #5915
- [Bre] BRELOT (M.). — Axiomatique des fonctions harmoniques. — Les Presses de l'Université de Montréal, 1969. Zbl0148.10401MR40 #393
- [Che] CHEVALLIER (N.). — A note on lower limit of series and potential theory, Proc. Royal Soc. Edinburgh, t. 121A, 1992, p. 273-277. Zbl0763.40001MR93j:31010
- [Da1] DAHLBERG (B.E.J.). — On estimates of harmonic measure, Arch. Rat. Mech. Anal., t. 1965, 1977, p. 272-288. Zbl0406.28009MR57 #6470
- [Da2] DAHLBERG (B.E.J.). — On the existence of radial boundary values for functions subharmonic in a Lipschitz domain, Indiana Univ. Math. J., t. 27, n° 3, 1978, p. 515-526. Zbl0402.31011MR58 #6292
- [Den] DENY (J.). — Un théorème sur les ensembles effilés, Ann. Univ. Grenoble Sect. Sci. Math. Phys., t. 23, 1948, p. 139-142. Zbl0030.05602MR9,509a
- [Doo] DOOB (J.L.). — Some classical function theory theorems and their modern versions, Ann. Inst. Fourier, t. 15 (1), 1965, p. 115-136. Zbl0154.07503MR34 #2923
- [Hei] HEINTZE (E.). — On homogeneous manifolds of negative curvature, Math. Ann., t. 211, 1974, p. 23-34. Zbl0273.53042MR50 #5695
- [Her] HERVÉ (R.-M.). — Recherche sur la théorie axiomatique des fonctions surharmoniques et du Potentiel, Ann. Inst. Fourier, t. XII, 1962, p. 415-471. Zbl0101.08103MR25 #3186
- [J-K] JERISON (D.), KENIG (C.). — Positive harmonic functions in non tangentially accessible domains, Advances in Math., t. 46, 1982, p. 80-147. Zbl0514.31003MR84d:31005b
- [Kan] KANNAI (Y.). — Off diagonal short time asymptotics for fundamental solutions of diffusions equations, Commun. Partial Differ. Equations, t. 2 (8), 1977, p. 781-830. Zbl0381.35039MR58 #29247
- [KW] KAUFMAN (R.), WU (J.-M.). — Parabolic Potential theory, J. Diff. Equations, t. 43, 1982, p. 204-234. Zbl0534.31005MR83d:31006
- [KT] KORANYI (A.), TAYLOR (J.C.). — Fine convergence and parabolic convergence for the Helmholtz equation and the heat equation, Illinois J. Math., t. 27 (1), 1983, p. 77-93. Zbl0488.31004MR85a:31008
- [Lel] LELONG-FERRAND (J.). — Étude au voisinage d'un point frontière des fonctions surharmoniques positives dans un demi-espace, Ann. Sci. École Norm. Sup., t. 66, 1947, p. 125-159. Zbl0033.37301MR11,176f
- [Lin] LINDEN (O.). — Fatou theorem for eigenfunctions of the Laplace-Beltrami operator. — Thesis, Yeshiva University, 1977.
- [Lit] LITTLEWOOD (J.E.). — On functions subharmonic in a circle, II, Proc. Lond. Math. Soc., t. 28 (2), 1928, p. 383-394. Zbl54.0516.04JFM54.0516.04
- [LMT] LYONS (T.J.), MACGIBBON (K.B.), TAYLOR (J.C.). — Projection theorems for hitting probabilities and a theorem of Littlewood, J. Funct. Anal., t. 59, 1984, p. 470-489. Zbl0566.58036MR86c:31002
- [Naï] NAÏM (L.). — Sur le rôle de la frontière de R.S. Martin dans la théorie du potentiel, Ann. Inst. Fourier, t. 7, 1957, p. 183-281. Zbl0086.30603MR20 #6608
- [TW] TAYLOR (S.J.), WATSON (N.A.). — A Hausdorff measure classification of polar sets for the heat equation, Math. Proc. Cambridge Phil. Soc., t. 97, 1985, p. 325-344. Zbl0584.31006MR86m:35077
- [Zha] ZHAO (S.). — Boundary behavior of subharmonic functions in nontangential accessible domains, Studia Math., t. 108 (1), 1994, p. 25-48. Zbl0863.31008MR94k:31009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.