Commutativity of compact selfadjoint operators
Studia Mathematica (1995)
- Volume: 112, Issue: 2, page 109-125
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R. F. V. Anderson, The Weyl functional calculus, J. Funct. Anal. 4 (1969), 240-267. Zbl0191.13403
- [2] G. B. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton Univ. Press, Princeton, 1989. Zbl0682.43001
- [3] G. Greiner and W. J. Ricker, Joint spectral sets and commutativity of systems of (2× 2) selfadjoint matrices, Linear and Multilinear Algebra 36 (1993), 47-58. Zbl0794.15007
- [4] B. R. F. Jefferies and W. J. Ricker, Commutativity for systems of (2×2) selfadjoint matrices, ibid. 35 (1993), 107-114. Zbl0796.15015
- [5] A. McIntosh and A. J. Pryde, A functional calculus for several commuting operators, Indiana Univ. Math. J. 36 (1987), 421-439. Zbl0694.47015
- [6] A. McIntosh, A. J. Pryde and W. J. Ricker, Comparison of joint spectra for certain classes of commuting operators, Studia Math. 88 (1988), 23-36. Zbl0665.47002
- [7] A. McIntosh, A. J. Pryde and W. J. Ricker, Systems of operator equations and perturbation of spectral subspaces of commuting operators, Michigan Math. J. 35 (1988), 43-65. Zbl0657.47021
- [8] A. J. Pryde, A non-commutative joint spectral theory, Proc. Centre Math. Anal. (Canberra) 20 (1988), 153-161. Zbl0705.47013
- [9] A. J. Pryde, Inequalities for exponentials in Banach algebras, Studia Math. 100 (1991), 87-94. Zbl0787.47005
- [10] W. J. Ricker, The Weyl calculus and commutativity for systems of selfadjoint matrices, Arch. Math. (Basel) 61 (1993), 173-176. Zbl0819.47005
- [11] H. H. Schaefer, Banach Lattices and Positive Operators, Springer, 1974. Zbl0296.47023
- [12] M. E. Taylor, Functions of several selfadjoint operators, Proc. Amer. Math. Soc. 19 (1968), 91-98. Zbl0164.16604