On the joint spectral radius of commuting matrices

Rajendra Bhatia; Tirthankar Вhattacharyya

Studia Mathematica (1995)

  • Volume: 114, Issue: 1, page 29-38
  • ISSN: 0039-3223

Abstract

top
For a commuting n-tuple of matrices we introduce the notion of a joint spectral radius with respect to the p-norm and prove a spectral radius formula.

How to cite

top

Bhatia, Rajendra, and Вhattacharyya, Tirthankar. "On the joint spectral radius of commuting matrices." Studia Mathematica 114.1 (1995): 29-38. <http://eudml.org/doc/216178>.

@article{Bhatia1995,
abstract = {For a commuting n-tuple of matrices we introduce the notion of a joint spectral radius with respect to the p-norm and prove a spectral radius formula.},
author = {Bhatia, Rajendra, Вhattacharyya, Tirthankar},
journal = {Studia Mathematica},
keywords = {commuting -tuple of matrices; joint spectral radius with respect to the -norm; spectral radius formula},
language = {eng},
number = {1},
pages = {29-38},
title = {On the joint spectral radius of commuting matrices},
url = {http://eudml.org/doc/216178},
volume = {114},
year = {1995},
}

TY - JOUR
AU - Bhatia, Rajendra
AU - Вhattacharyya, Tirthankar
TI - On the joint spectral radius of commuting matrices
JO - Studia Mathematica
PY - 1995
VL - 114
IS - 1
SP - 29
EP - 38
AB - For a commuting n-tuple of matrices we introduce the notion of a joint spectral radius with respect to the p-norm and prove a spectral radius formula.
LA - eng
KW - commuting -tuple of matrices; joint spectral radius with respect to the -norm; spectral radius formula
UR - http://eudml.org/doc/216178
ER -

References

top
  1. [BW] M. A. Berger and Y. Wang, Bounded semigroups of matrices, Linear Algebra Appl. 166 (1992), 21-27. Zbl0818.15006
  2. [C1] R. E. Curto, The spectra of elementary operators, Indiana Univ. Math. J. 32 (1983), 193-197. Zbl0488.47002
  3. [C2] R. E. Curto, Applications of several complex variables to multiparameter spectral theory, in: Surveys of Some Recent Results in Operator Theory, Vol. 2, J. B. Conway and B. B. Morrel (eds.), Longman Scientific and Technical, Essex, 1989, 25-80. 
  4. [CH] M. Chō and T. Huruya, On the joint spectral radius, Proc. Roy. Irish Acad. Sect. A 91 (1991), 39-44. Zbl0776.47004
  5. [CZ] M. Chō and W. Żelazko, On geometric spectral radius of commuting n-tuples of operators, Hokkaido Math. J. 21 (1992), 251-258. Zbl0784.47004
  6. [DL] I. Daubechies and J. C. Lagarias, Sets of matrices all finite products of which converge, Linear Algebra Appl. 161 (1992), 227-263. Zbl0746.15015
  7. [E] L. Elsner, The generalized spectral radius theorem, an analytic-geometric proof, Linear Algebra Appl., to appear. Zbl0828.15006
  8. [FN] T. Furuta and R. Nakamoto, On the numerical range of an operator, Proc. Japan Acad. 47 (1971), 279-284. Zbl0227.47002
  9. [HJ] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge, 1985. 
  10. [MS] V. Müller and A. Sołtysiak, Spectral radius formula for commuting Hilbert space operators, Studia Math. 103 (1992), 329-333. Zbl0812.47004
  11. [P] V. I. Paulsen, Completely Bounded Maps and Dilations, Longman Scientific and Technical, Essex, 1986. 
  12. [R] G. C. Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469-472. Zbl0097.31604
  13. [RS] G. C. Rota and W. G. Strang, A note on the joint spectral radius, Indag. Math. 22 (1960), 379-381. Zbl0095.09701

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.