# On the joint spectral radius of commuting matrices

Rajendra Bhatia; Tirthankar Вhattacharyya

Studia Mathematica (1995)

- Volume: 114, Issue: 1, page 29-38
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topBhatia, Rajendra, and Вhattacharyya, Tirthankar. "On the joint spectral radius of commuting matrices." Studia Mathematica 114.1 (1995): 29-38. <http://eudml.org/doc/216178>.

@article{Bhatia1995,

abstract = {For a commuting n-tuple of matrices we introduce the notion of a joint spectral radius with respect to the p-norm and prove a spectral radius formula.},

author = {Bhatia, Rajendra, Вhattacharyya, Tirthankar},

journal = {Studia Mathematica},

keywords = {commuting -tuple of matrices; joint spectral radius with respect to the -norm; spectral radius formula},

language = {eng},

number = {1},

pages = {29-38},

title = {On the joint spectral radius of commuting matrices},

url = {http://eudml.org/doc/216178},

volume = {114},

year = {1995},

}

TY - JOUR

AU - Bhatia, Rajendra

AU - Вhattacharyya, Tirthankar

TI - On the joint spectral radius of commuting matrices

JO - Studia Mathematica

PY - 1995

VL - 114

IS - 1

SP - 29

EP - 38

AB - For a commuting n-tuple of matrices we introduce the notion of a joint spectral radius with respect to the p-norm and prove a spectral radius formula.

LA - eng

KW - commuting -tuple of matrices; joint spectral radius with respect to the -norm; spectral radius formula

UR - http://eudml.org/doc/216178

ER -

## References

top- [BW] M. A. Berger and Y. Wang, Bounded semigroups of matrices, Linear Algebra Appl. 166 (1992), 21-27. Zbl0818.15006
- [C1] R. E. Curto, The spectra of elementary operators, Indiana Univ. Math. J. 32 (1983), 193-197. Zbl0488.47002
- [C2] R. E. Curto, Applications of several complex variables to multiparameter spectral theory, in: Surveys of Some Recent Results in Operator Theory, Vol. 2, J. B. Conway and B. B. Morrel (eds.), Longman Scientific and Technical, Essex, 1989, 25-80.
- [CH] M. Chō and T. Huruya, On the joint spectral radius, Proc. Roy. Irish Acad. Sect. A 91 (1991), 39-44. Zbl0776.47004
- [CZ] M. Chō and W. Żelazko, On geometric spectral radius of commuting n-tuples of operators, Hokkaido Math. J. 21 (1992), 251-258. Zbl0784.47004
- [DL] I. Daubechies and J. C. Lagarias, Sets of matrices all finite products of which converge, Linear Algebra Appl. 161 (1992), 227-263. Zbl0746.15015
- [E] L. Elsner, The generalized spectral radius theorem, an analytic-geometric proof, Linear Algebra Appl., to appear. Zbl0828.15006
- [FN] T. Furuta and R. Nakamoto, On the numerical range of an operator, Proc. Japan Acad. 47 (1971), 279-284. Zbl0227.47002
- [HJ] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge, 1985.
- [MS] V. Müller and A. Sołtysiak, Spectral radius formula for commuting Hilbert space operators, Studia Math. 103 (1992), 329-333. Zbl0812.47004
- [P] V. I. Paulsen, Completely Bounded Maps and Dilations, Longman Scientific and Technical, Essex, 1986.
- [R] G. C. Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469-472. Zbl0097.31604
- [RS] G. C. Rota and W. G. Strang, A note on the joint spectral radius, Indag. Math. 22 (1960), 379-381. Zbl0095.09701

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.