On the joint spectral radius of a nilpotent Lie algebra of matrices

Enrico Boasso

Studia Mathematica (1999)

  • Volume: 132, Issue: 1, page 15-27
  • ISSN: 0039-3223

Abstract

top
For a complex nilpotent finite-dimensional Lie algebra of matrices, and a Jordan-Hölder basis of it, we prove a spectral radius formula which extends a well-known result for commuting matrices.

How to cite

top

Boasso, Enrico. "On the joint spectral radius of a nilpotent Lie algebra of matrices." Studia Mathematica 132.1 (1999): 15-27. <http://eudml.org/doc/216582>.

@article{Boasso1999,
abstract = {For a complex nilpotent finite-dimensional Lie algebra of matrices, and a Jordan-Hölder basis of it, we prove a spectral radius formula which extends a well-known result for commuting matrices.},
author = {Boasso, Enrico},
journal = {Studia Mathematica},
keywords = {Taylor spectrum; joint spectral radius; nilpotent Lie algebras; Lie algebra of matrices; Jordan-Hölder basis},
language = {eng},
number = {1},
pages = {15-27},
title = {On the joint spectral radius of a nilpotent Lie algebra of matrices},
url = {http://eudml.org/doc/216582},
volume = {132},
year = {1999},
}

TY - JOUR
AU - Boasso, Enrico
TI - On the joint spectral radius of a nilpotent Lie algebra of matrices
JO - Studia Mathematica
PY - 1999
VL - 132
IS - 1
SP - 15
EP - 27
AB - For a complex nilpotent finite-dimensional Lie algebra of matrices, and a Jordan-Hölder basis of it, we prove a spectral radius formula which extends a well-known result for commuting matrices.
LA - eng
KW - Taylor spectrum; joint spectral radius; nilpotent Lie algebras; Lie algebra of matrices; Jordan-Hölder basis
UR - http://eudml.org/doc/216582
ER -

References

top
  1. [1] R. Bhatia and T. Bhattacharyya, On the joint spectral radius of commuting matrices, Studia Math. 114 (1995), 29-38. Zbl0830.47002
  2. [2] E. Boasso, Dual properties and joint spectra for solvable Lie algebras of operators, J. Operator Theory 33 (1995), 105-116. Zbl0838.47036
  3. [3] E. Boasso, Joint spectra and nilpotent Lie algebras of Linear transformations, Linear Algebra Appl. 263 (1997), 49-62. Zbl0965.47004
  4. [4] E. Boasso and A. Larotonda, A spectral theory for solvable Lie algebras of operators, Pacific J. Math. 158 (1993), 15-22. Zbl0789.47004
  5. [5] N. Bourbaki, Éléments de Mathématique, Groupes et Algèbres de Lie, Algèbres de Lie Fasc. XXVI, Hermann, 1960. Zbl0199.35203
  6. [6] M. Chō and T. Huruya, On the joint spectral radius, Proc. Roy. Irish Acad. Sect. A 91 (1991), 39-44. Zbl0776.47004
  7. [7] M. Chō and M. Takaguchi, Identity of Taylor's joint spectrum and Dash's joint spectrum, Studia Math. 70 (1982), 225-229. Zbl0494.47003
  8. [8] N. Jacobson, Lie Algebras, Interscience Publ., 1962. 
  9. [9] A. McIntosh, A. Pryde and W. Ricker, Comparison of joint spectra for certain classes of commuting opertors, Studia Math. 88 (1988), 23-36. Zbl0665.47002
  10. [10] C. Ott, A note on a paper of E. Boasso and A. Larotonda, Pacific J. Math. 173 (1996), 173-179. 
  11. [11] Z. Słodkowski, An infinite family of joint spectra, Studia Math. 61 (1973), 239-235. Zbl0369.47021
  12. [12] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191. Zbl0233.47024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.