Some results about Beurling algebras with applications to operator theory

Thomas Vils Pedersen

Studia Mathematica (1995)

  • Volume: 115, Issue: 1, page 39-52
  • ISSN: 0039-3223

Abstract

top
We prove that certain maximal ideals in Beurling algebras on the unit disc have approximate identities, and show the existence of functions with certain properties in these maximal ideals. We then use these results to prove that if T is a bounded operator on a Banach space X satisfying T n = O ( n β ) as n → ∞ for some β ≥ 0, then n = 1 ( 1 - T ) n x / ( 1 - T ) n - 1 x diverges for every x ∈ X such that ( 1 - T ) [ β ] + 1 x 0 .

How to cite

top

Vils Pedersen, Thomas. "Some results about Beurling algebras with applications to operator theory." Studia Mathematica 115.1 (1995): 39-52. <http://eudml.org/doc/216197>.

@article{VilsPedersen1995,
author = {Vils Pedersen, Thomas},
journal = {Studia Mathematica},
keywords = {power bounded operator; maximal ideals in Beurling algebras on the unit disc; approximate identities},
language = {eng},
number = {1},
pages = {39-52},
title = {Some results about Beurling algebras with applications to operator theory},
url = {http://eudml.org/doc/216197},
volume = {115},
year = {1995},
}

TY - JOUR
AU - Vils Pedersen, Thomas
TI - Some results about Beurling algebras with applications to operator theory
JO - Studia Mathematica
PY - 1995
VL - 115
IS - 1
SP - 39
EP - 52
LA - eng
KW - power bounded operator; maximal ideals in Beurling algebras on the unit disc; approximate identities
UR - http://eudml.org/doc/216197
ER -

References

top
  1. [1] A. Atzmon, Operators which are annihilated by analytic functions and invariant subspaces, Acta Math. 144 (1980), 27-63. Zbl0449.47007
  2. [2] C. Bennett and J. E. Gilbert, Homogeneous algebras on the circle: I. Ideals of analytic functions, Ann. Inst. Fourier (Grenoble) 22 (3) (1972), 1-19. Zbl0228.46046
  3. [3] J. G. Caughran, Factorization of analytic functions with H p derivative, Duke Math. J. 36 (1969), 153-158. Zbl0176.37601
  4. [4] J. Esterle et F. Zouakia, Rythme de décroissance des itérés de certains opérateurs de l'espace de Hilbert, J. Operator Theory 21 (1989), 387-396. Zbl0703.47001
  5. [5] I. M. Gelfand, D. A. Raikov and G. E. Shilov, Commutative Normed Rings, Chelsea, Bronx, 1964. 
  6. [6] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, N.J., 1962. Zbl0117.34001
  7. [7] J.-P. Kahane, Idéaux primaires fermés dans certaines algèbres de Banach de fonctions analytiques, in: E. J. Akutowicz (ed.), L'analyse harmonique dans le domaine complexe, Lecture Notes in Math. 336, Springer, Berlin, 1973, 5-14. 
  8. [8] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, New York, 1968. 
  9. [9] T. V. Pedersen, Norms of powers in Banach algebras, Bull. London Math. Soc., to appear. Zbl0835.46045
  10. [10] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Oxford Univ. Press, London, 1968. Zbl0165.15601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.