# A lifting theorem for locally convex subspaces of ${L}_{0}$

Studia Mathematica (1995)

- Volume: 115, Issue: 1, page 73-85
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topFaber, R.. "A lifting theorem for locally convex subspaces of $L_0$." Studia Mathematica 115.1 (1995): 73-85. <http://eudml.org/doc/216199>.

@article{Faber1995,

abstract = {We prove that for every closed locally convex subspace E of $L_0$ and for any continuous linear operator T from $L_0$ to $L_0/E$ there is a continuous linear operator S from $L_0$ to $L_0$ such that T = QS where Q is the quotient map from $L_0$ to $L_0/E$.},

author = {Faber, R.},

journal = {Studia Mathematica},

keywords = {lifting theorem},

language = {eng},

number = {1},

pages = {73-85},

title = {A lifting theorem for locally convex subspaces of $L_0$},

url = {http://eudml.org/doc/216199},

volume = {115},

year = {1995},

}

TY - JOUR

AU - Faber, R.

TI - A lifting theorem for locally convex subspaces of $L_0$

JO - Studia Mathematica

PY - 1995

VL - 115

IS - 1

SP - 73

EP - 85

AB - We prove that for every closed locally convex subspace E of $L_0$ and for any continuous linear operator T from $L_0$ to $L_0/E$ there is a continuous linear operator S from $L_0$ to $L_0$ such that T = QS where Q is the quotient map from $L_0$ to $L_0/E$.

LA - eng

KW - lifting theorem

UR - http://eudml.org/doc/216199

ER -

## References

top- [1] T. Aoki, Locally bounded linear topological spaces, Proc. Imp. Acad. Tokyo 18 (1942), No. 10 Zbl0060.26503
- [2] N. J. Kalton and N. T. Peck, Quotients of ${L}_{p}$ for 0≤ p<1, Studia Math. 64 (1979), 65-75. Zbl0393.46007
- [3] N. J. Kalton, N. T. Peck and J. W. Roberts, An F-space Sampler, Cambridge Univ. Press, Cambridge, 1984.
- [4] S. Kwapień, On the form of a linear operator in the space of all measurable functions, Bull. Acad. Polon. Sci. 21 (1973), 951-954. Zbl0271.60004
- [5] R. E. A. C. Paley and A. Zygmund, On some series of functions III, Proc. Cambridge Philos. Soc. 28 (1932), 190-205. Zbl0006.19802
- [6] N. T. Peck and T. Starbird, ${L}_{0}$ is ω-transitive, Proc. Amer. Math. Soc. 83 (1981), 700-704.
- [7] S. Rolewicz, On a certain class of linear metric spaces, Bull. Acad. Polon. Sci. 5 (1957), 471-473. Zbl0079.12602
- [8] P. Turpin, Convexités dans les espaces vectoriels topologiques généraux, Dissertationes Math. 131 (1976).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.