The functor σ²X

Stevo Todorčević

Studia Mathematica (1995)

  • Volume: 116, Issue: 1, page 49-57
  • ISSN: 0039-3223

Abstract

top
We disprove the existence of a universal object in several classes of spaces including the class of weakly Lindelöf Banach spaces.

How to cite

top

Todorčević, Stevo. "The functor σ²X." Studia Mathematica 116.1 (1995): 49-57. <http://eudml.org/doc/216219>.

@article{Todorčević1995,
abstract = {We disprove the existence of a universal object in several classes of spaces including the class of weakly Lindelöf Banach spaces.},
author = {Todorčević, Stevo},
journal = {Studia Mathematica},
keywords = {existence of a universal object; weakly Lindelöf-Banach spaces},
language = {eng},
number = {1},
pages = {49-57},
title = {The functor σ²X},
url = {http://eudml.org/doc/216219},
volume = {116},
year = {1995},
}

TY - JOUR
AU - Todorčević, Stevo
TI - The functor σ²X
JO - Studia Mathematica
PY - 1995
VL - 116
IS - 1
SP - 49
EP - 57
AB - We disprove the existence of a universal object in several classes of spaces including the class of weakly Lindelöf Banach spaces.
LA - eng
KW - existence of a universal object; weakly Lindelöf-Banach spaces
UR - http://eudml.org/doc/216219
ER -

References

top
  1. [0] S. Argyros and Y. Benyamini, Universal WCG Banach spaces and universal Eberlein compacts, Israel J. Math. 58 (1987), 305-320. Zbl0637.46010
  2. [1] S. Argyros and S. Mercourakis, Weakly Lindelöf Banach spaces, Rocky Mountain J. Math. 23 (1993), 395-446. Zbl0797.46009
  3. [2] Y. Benyamini, M. E. Rudin and M. Wage, Continuous images of weakly compact subsets of Banach spaces, Pacific J. Math. 70 (1977), 309-324. Zbl0374.46011
  4. [3] Y. Benyamini and T. Starbird, Embedding weakly compact sets into Hilbert space, Israel J. Math. 23 (1976), 137-141. Zbl0325.46023
  5. [4] H. H. Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), 1-15. Zbl0104.08502
  6. [5] A. S. Esenin-Vol'pin, On the existence of universal bicompacta in a given weight, Dokl. Akad. Nauk SSSR 68 (1949), 649-652 (in Russian). 
  7. [6] V. V. Filippov, On perfectly normal bicompacta, Soviet Math. Dokl. 10 (1969), 1503-1507. Zbl0198.55502
  8. [7] A. M. Gleason and R. P. Dilworth, A generalized Cantor Theorem, Proc. Amer. Math. Soc. 13 (1962), 704-705. Zbl0109.24203
  9. [8] G. Gruenhage, On a Corson space of Todorčević, Fund. Math. 126 (1986), 261-268. Zbl0618.54021
  10. [9] S. P. Gul'ko, On the structure of spaces of continuous functions and their complete paracompactness, Russian Math. Surveys 34 (1979), 36-44. 
  11. [10] F. Hartogs, Über das Problem der Wohlordnung, Math. Ann. 76 (1915), 436-443. Zbl45.0125.01
  12. [11] G. Kurepa, Ensembles ordonnés et leur sous-ensembles bien ordonnés, C. R. Acad. Sci. Paris 242 (1956), 2202-2203. Zbl0071.05004
  13. [12] A. G. Leiderman and G. A. Sokolov, Adequate families of sets and Corson compacta, Comment. Math. Univ. Carolin. 25 (1984), 233-245. Zbl0586.54022
  14. [13] R. Pol, On a question of H. H. Corson and some related problems, Fund. Math. 109 (1980), 143-154. Zbl0486.46007
  15. [14] D. B. Shakhmatov, Compact spaces and their generalizations, in: Recent Progress in Topology, M. Hušek and J. van Mill (eds.), Elsevier, 1992. Zbl0801.54001
  16. [15] W. Szlenk, The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, Studia Math. 30 (1968), 53-61. Zbl0169.15303
  17. [16] M. Talagrand, Espaces de Banach faiblement K-analytiques, Ann. of Math. 110 (1979), 407-438. Zbl0393.46019
  18. [17] S. Todorčević, Partition relations for partially ordered sets, Acta Math. 155 (1985), 1-25. Zbl0603.03013
  19. [18] M. Valdivia, Resolutions of the identity in certain Banach spaces, Collect. Math. 39 (1988), 127-140. Zbl0718.46006
  20. [19] L. Vašak, On one generalization of weakly compactly generated Banach spaces, Studia Math. 70 (1981), 1-19. Zbl0376.46012
  21. [20] S. Watson and W. Weiss, A topology on the union of the double arrow space and the integers, Topology Appl. 28 (1988), 177-179. Zbl0632.54023
  22. [21] E. Zermelo, Beweis, das jede Menge wohlgeordnet werden kann, Math. Ann. 59 (1904), 514-516. Zbl35.0088.03

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.