Sur le théorème de division de Weierstrass

Jacques Chaumat; Anne-Marie Chollet

Studia Mathematica (1995)

  • Volume: 116, Issue: 1, page 59-84
  • ISSN: 0039-3223

Abstract

top
We prove a Weierstrass division formula for C Whitney jets ∂̅-flat on arbitrary compact subsets of the complex plane. We also give results for Carleman classes.

How to cite

top

Chaumat, Jacques, and Chollet, Anne-Marie. "Sur le théorème de division de Weierstrass." Studia Mathematica 116.1 (1995): 59-84. <http://eudml.org/doc/216220>.

@article{Chaumat1995,
author = {Chaumat, Jacques, Chollet, Anne-Marie},
journal = {Studia Mathematica},
keywords = {division; Weierstrass; Whitney jets; non-quasi-analytic; Whitney jets; -algebra; Weierstrass-Malgrange division theorem; Gevrey classes},
language = {fre},
number = {1},
pages = {59-84},
title = {Sur le théorème de division de Weierstrass},
url = {http://eudml.org/doc/216220},
volume = {116},
year = {1995},
}

TY - JOUR
AU - Chaumat, Jacques
AU - Chollet, Anne-Marie
TI - Sur le théorème de division de Weierstrass
JO - Studia Mathematica
PY - 1995
VL - 116
IS - 1
SP - 59
EP - 84
LA - fre
KW - division; Weierstrass; Whitney jets; non-quasi-analytic; Whitney jets; -algebra; Weierstrass-Malgrange division theorem; Gevrey classes
UR - http://eudml.org/doc/216220
ER -

References

top
  1. [1] S. Bell and D. Catlin, Proper holomorphic mappings extend smoothly to the boundary, Bull. Amer. Math. Soc. 7 (1982), 269-272. Zbl0491.32018
  2. [2] S. Bell and D. Catlin, Boundary regularity of proper holomorphic mappings, Duke Math. J. 49 (1982), 385-396. Zbl0475.32011
  3. [3] M. D. Bronshteĭn, Division with remainder in spaces of smooth functions, Trans. Moscow Math. Soc. 52 (1990), 109-138. 
  4. [4] J. Bruna, An extension theorem of Whitney type for non-quasianalytic classes of functions, J. London Math. Soc. (2) 22 (1980), 495-505. Zbl0419.26010
  5. [5] J. Chaumat et A. M. Chollet, Noyaux pour résoudre l’équation ∂̅ dans des classes ultradifférentiables sur des compacts irréguliers de m , dans : Several Complex Variables, Proc. Mittag-Leffler Inst. 1987-88, Math. Notes 38, Princeton University Press, 1993, 205-226. Zbl0777.32009
  6. [6] J. Chaumat et A. M. Chollet, Représentations intégrales de jets de Whitney, dans : The Madison Symposium on Complex Analysis, Contemp. Math. 137, Amer. Math. Soc., 1992, 133-153. Zbl0768.32001
  7. [7] J. Chaumat et A. M. Chollet, Théorème de Whitney dans des classes ultradifférentiables, Publ. I.R.M.A. Lille, 1992. Zbl0762.26014
  8. [8] K. Diederich and J. E. Fornæss, Boundary regularity of proper holomorphic mappings, Invent. Math. 67 (1982), 363-384. Zbl0501.32010
  9. [9] E. M. Dynkin, Pseudoanalytic extension of smooth functions. The uniform scale, Amer. Math. Soc. Transl. 115 (1980), 33-58. 
  10. [10] L. Hörmander, The Analysis of Linear Partial Differential Operators I, 2ème éd. Springer, 1989. 
  11. [11] B. Malgrange, Ideals of Differentiable Functions, Oxford University Press, 1966. Zbl0177.17902
  12. [12] W. Pleśniak, Extension and polynomial approximation of ultradifferentiable functions in n , Bull. Soc. Roy. Sci. Liège 63 (1994), 393-402. Zbl0816.26009
  13. [13] V. Thilliez, Prolongement dans des classes ultradifférentiables et propriétés de régularité des compacts de n , Ann. Polon. Math., à paraître. 
  14. [14] J. C. Tougeron, Idéaux de fonctions différentiables, Springer, 1972. Zbl0251.58001
  15. [15] Proceedings of Liverpool Singularities Symposium I, Lecture Notes in Math. 192, Springer, 1971. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.