On the rings of formal solutions of polynomial differential equations
Banach Center Publications (1998)
- Volume: 44, Issue: 1, page 277-292
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topZurro, Maria-Angeles. "On the rings of formal solutions of polynomial differential equations." Banach Center Publications 44.1 (1998): 277-292. <http://eudml.org/doc/208891>.
@article{Zurro1998,
abstract = {The paper establishes the basic algebraic theory for the Gevrey rings. We prove the Hensel lemma, the Artin approximation theorem and the Weierstrass-Hironaka division theorem for them. We introduce a family of norms and we look at them as a family of analytic functions defined on some semialgebraic sets. This allows us to study the analytic and algebraic properties of this rings.},
author = {Zurro, Maria-Angeles},
journal = {Banach Center Publications},
keywords = {Gevrey rings; Hensel lemma; Artin approximation theorem; Weierstrass-Hironaka division theorem; semialgebraic sets},
language = {eng},
number = {1},
pages = {277-292},
title = {On the rings of formal solutions of polynomial differential equations},
url = {http://eudml.org/doc/208891},
volume = {44},
year = {1998},
}
TY - JOUR
AU - Zurro, Maria-Angeles
TI - On the rings of formal solutions of polynomial differential equations
JO - Banach Center Publications
PY - 1998
VL - 44
IS - 1
SP - 277
EP - 292
AB - The paper establishes the basic algebraic theory for the Gevrey rings. We prove the Hensel lemma, the Artin approximation theorem and the Weierstrass-Hironaka division theorem for them. We introduce a family of norms and we look at them as a family of analytic functions defined on some semialgebraic sets. This allows us to study the analytic and algebraic properties of this rings.
LA - eng
KW - Gevrey rings; Hensel lemma; Artin approximation theorem; Weierstrass-Hironaka division theorem; semialgebraic sets
UR - http://eudml.org/doc/208891
ER -
References
top- [ADM] G. R. Allan, H. G. Dale, J. P. McClure Pseudo-Banach algebras Studia Math. 40 (1971), 55-69
- [AHV] J. M. Aroca, H. Hironaka, J. L. Vicente The Theory of the Maximal Contact Memorias de Matemática del Instituto 'Jorge Juan' 29, Madrid, 1975
- [BR] R. Benedetti, J. J. Risler Real Algebraic and Semi-algebraic Sets Actualités Math., Hermann, Paris, 1990
- [B] J. W. Brewer Power Series over Commutative Rings Lecture Notes in Pure and Appl. Math. 64, Marcel Dekker, New York, 1981
- [Ca] J. Cano On the series defined by differential equations with an extension of the Puiseux polygon construction to this series Analysis 13 (1993), 103-119 Zbl0793.34009
- [CC1] J. Chaumat, A. M. Chollet Sur le théorème de division de Weierstrass Studia Math. 116 (1995), 59-84
- [CC2] J. Chaumat, A. M. Chollet Théorème de preparation dans les classes ultradifferentiables C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 1305-1310
- [Co] P. M. Cohn Puiseux's theorem revisited J. Pure Appl. Algebra 31 (1984), 1-4
- [G] M. Gevrey Sur la nature analytique des solutions des équations aux dérivées partielles Ann. Sci. École Norm. Sup. (3) 25 (1918), 129-190 Zbl46.0721.01
- [H] H. Hironaka Idealistic exponents of singularity in: Algebraic Geometry, John Hopkins Univ. Press, Baltimore, 1977, 52-125
- [Mi] E. Maillet Sur les séries divergentes et les équations differentielles Ann. Sci. École Norm. Sup. 3 (1903), 487-518
- [Ml] B. Malgrange Sur le théorème de Maillet Asymptot. Anal. 2 (1989), 1-4
- [M] H. Matsumura Commutative Algebra Math. Lecture Note Ser. 56, Benjamin/Cumming Publishing Co., Reading, 1980
- [N] M. Nagata Local Rings Robert E. Krieger Publishing Co., Huntington, 1975
- [O] S. Ouchi Formal solutions with Gevrey type estimates of nonlinear partial differential equations J. Math. Sci. Univ. Tokyo 1 (1994), 205-237
- [R] C. Rotthaus On the approximation theory of excellent rings Invent. Math. 88 (1987), 39-63
- [T] J. Cl. Tougeron Sur les ensembles semi-analytiques avec conditions Gevrey au bord Ann. Sci. École Norm. Sup. (4) 27 (1994), 173-208
- [Z1] M. A. Zurro Le théorème de division pour les séries Gevrey à plusieurs variables Preprint, University of Valladolid, Spain, 1992
- [Z2] M. A. Zurro The Abhyankar Jung theorem revisited J. Pure Appl. Algebra 90 (1993), 257-282
- [Z3] M. A. Zurro Series y funciones Gevrey en varias variables Ph.D. Thesis, University of Valladolid, Spain, 1994
- [Z4] M. A. Zurro Summability 'au plus petit terme' Studia Math. 113 (1995), 197-198
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.