On the rings of formal solutions of polynomial differential equations

Maria-Angeles Zurro

Banach Center Publications (1998)

  • Volume: 44, Issue: 1, page 277-292
  • ISSN: 0137-6934

Abstract

top
The paper establishes the basic algebraic theory for the Gevrey rings. We prove the Hensel lemma, the Artin approximation theorem and the Weierstrass-Hironaka division theorem for them. We introduce a family of norms and we look at them as a family of analytic functions defined on some semialgebraic sets. This allows us to study the analytic and algebraic properties of this rings.

How to cite

top

Zurro, Maria-Angeles. "On the rings of formal solutions of polynomial differential equations." Banach Center Publications 44.1 (1998): 277-292. <http://eudml.org/doc/208891>.

@article{Zurro1998,
abstract = {The paper establishes the basic algebraic theory for the Gevrey rings. We prove the Hensel lemma, the Artin approximation theorem and the Weierstrass-Hironaka division theorem for them. We introduce a family of norms and we look at them as a family of analytic functions defined on some semialgebraic sets. This allows us to study the analytic and algebraic properties of this rings.},
author = {Zurro, Maria-Angeles},
journal = {Banach Center Publications},
keywords = {Gevrey rings; Hensel lemma; Artin approximation theorem; Weierstrass-Hironaka division theorem; semialgebraic sets},
language = {eng},
number = {1},
pages = {277-292},
title = {On the rings of formal solutions of polynomial differential equations},
url = {http://eudml.org/doc/208891},
volume = {44},
year = {1998},
}

TY - JOUR
AU - Zurro, Maria-Angeles
TI - On the rings of formal solutions of polynomial differential equations
JO - Banach Center Publications
PY - 1998
VL - 44
IS - 1
SP - 277
EP - 292
AB - The paper establishes the basic algebraic theory for the Gevrey rings. We prove the Hensel lemma, the Artin approximation theorem and the Weierstrass-Hironaka division theorem for them. We introduce a family of norms and we look at them as a family of analytic functions defined on some semialgebraic sets. This allows us to study the analytic and algebraic properties of this rings.
LA - eng
KW - Gevrey rings; Hensel lemma; Artin approximation theorem; Weierstrass-Hironaka division theorem; semialgebraic sets
UR - http://eudml.org/doc/208891
ER -

References

top
  1. [ADM] G. R. Allan, H. G. Dale, J. P. McClure Pseudo-Banach algebras Studia Math. 40 (1971), 55-69 
  2. [AHV] J. M. Aroca, H. Hironaka, J. L. Vicente The Theory of the Maximal Contact Memorias de Matemática del Instituto 'Jorge Juan' 29, Madrid, 1975 
  3. [BR] R. Benedetti, J. J. Risler Real Algebraic and Semi-algebraic Sets Actualités Math., Hermann, Paris, 1990 
  4. [B] J. W. Brewer Power Series over Commutative Rings Lecture Notes in Pure and Appl. Math. 64, Marcel Dekker, New York, 1981 
  5. [Ca] J. Cano On the series defined by differential equations with an extension of the Puiseux polygon construction to this series Analysis 13 (1993), 103-119 Zbl0793.34009
  6. [CC1] J. Chaumat, A. M. Chollet Sur le théorème de division de Weierstrass Studia Math. 116 (1995), 59-84 
  7. [CC2] J. Chaumat, A. M. Chollet Théorème de preparation dans les classes ultradifferentiables C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 1305-1310 
  8. [Co] P. M. Cohn Puiseux's theorem revisited J. Pure Appl. Algebra 31 (1984), 1-4 
  9. [G] M. Gevrey Sur la nature analytique des solutions des équations aux dérivées partielles Ann. Sci. École Norm. Sup. (3) 25 (1918), 129-190 Zbl46.0721.01
  10. [H] H. Hironaka Idealistic exponents of singularity in: Algebraic Geometry, John Hopkins Univ. Press, Baltimore, 1977, 52-125 
  11. [Mi] E. Maillet Sur les séries divergentes et les équations differentielles Ann. Sci. École Norm. Sup. 3 (1903), 487-518 
  12. [Ml] B. Malgrange Sur le théorème de Maillet Asymptot. Anal. 2 (1989), 1-4 
  13. [M] H. Matsumura Commutative Algebra Math. Lecture Note Ser. 56, Benjamin/Cumming Publishing Co., Reading, 1980 
  14. [N] M. Nagata Local Rings Robert E. Krieger Publishing Co., Huntington, 1975 
  15. [O] S. Ouchi Formal solutions with Gevrey type estimates of nonlinear partial differential equations J. Math. Sci. Univ. Tokyo 1 (1994), 205-237 
  16. [R] C. Rotthaus On the approximation theory of excellent rings Invent. Math. 88 (1987), 39-63 
  17. [T] J. Cl. Tougeron Sur les ensembles semi-analytiques avec conditions Gevrey au bord Ann. Sci. École Norm. Sup. (4) 27 (1994), 173-208 
  18. [Z1] M. A. Zurro Le théorème de division pour les séries Gevrey à plusieurs variables Preprint, University of Valladolid, Spain, 1992 
  19. [Z2] M. A. Zurro The Abhyankar Jung theorem revisited J. Pure Appl. Algebra 90 (1993), 257-282 
  20. [Z3] M. A. Zurro Series y funciones Gevrey en varias variables Ph.D. Thesis, University of Valladolid, Spain, 1994 
  21. [Z4] M. A. Zurro Summability 'au plus petit terme' Studia Math. 113 (1995), 197-198 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.