Spectres de M-extensions aléatoires
Annales de l'I.H.P. Probabilités et statistiques (1999)
- Volume: 35, Issue: 2, page 239-259
- ISSN: 0246-0203
Access Full Article
topHow to cite
topGuenais, Mélanie. "Spectres de M-extensions aléatoires." Annales de l'I.H.P. Probabilités et statistiques 35.2 (1999): 239-259. <http://eudml.org/doc/77629>.
@article{Guenais1999,
author = {Guenais, Mélanie},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {M-extension; spectral singularity; spectral continuity; cocycle; abelian group; Haar measure; Morse extension},
language = {fre},
number = {2},
pages = {239-259},
publisher = {Gauthier-Villars},
title = {Spectres de M-extensions aléatoires},
url = {http://eudml.org/doc/77629},
volume = {35},
year = {1999},
}
TY - JOUR
AU - Guenais, Mélanie
TI - Spectres de M-extensions aléatoires
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 2
SP - 239
EP - 259
LA - fre
KW - M-extension; spectral singularity; spectral continuity; cocycle; abelian group; Haar measure; Morse extension
UR - http://eudml.org/doc/77629
ER -
References
top- [1] J. Aaronson and M. Nadkarni, L∞-eigenvalues and L2-spectra of non singular tranformations, Proc. London Math. Soc., Vol. 55, 1987, pp. 538-570. Zbl0636.28010MR907232
- [2] J. Bourgain, On the spectral type of Ornstein's class one transformations, Israel J. of Math., Vol. 84, 1993, pp. 53-63. Zbl0787.28011MR1244658
- [3] R.V. Chacon, A geometric construction of measure-preserving transformations, Proc. Fifth Berkeley Symp. Math. Stat. Proba., 1965 pp. 335-360. Zbl0212.08401MR212158
- [4] J. Choksi and M. Nadkarni, The maximal spectral type of a rank one transformation, Canad. Math. Bull., Vol. 37, 1994, pp. 29-36. Zbl0793.28013MR1261554
- [5] J. Choksi and M. Nadkarni, The group of eigenvalues of a rank one transformation, Canad. Math. Bull., Vol. 38, 1995, pp. 42-54. Zbl0833.28008MR1319899
- [6] S. Ferenczi, Systèmes de rang fini, Thèse, 1990.
- [7] G.R. Goodson, J. Kwiatkowski, M. Lemańczyk and P. Liardet, On the multiplicity function of ergodic group extensions of rotations, Studia Math., Vol. 102, 1992, pp. 157-174. Zbl0830.28009MR1169284
- [8] M. Guenais, Morse cocycles and simple Lebesgue spectrum, à paraître dans Erg. Th. Dyn. Syst., 1998. Zbl1031.37006MR1685402
- [9] H. Helson, Cocycles on the circle, J. Operator Th., Vol. 16, 1986, pp. 189-199. Zbl0644.43003MR847339
- [10] H. Helson and W. Parry, Cocycles and spectra, Arkiv für Math., Vol. 16, 1978, pp. 195-206. Zbl0401.28018MR524748
- [11] B. Host, J.F. Méla and F. Parreau, Non singular transformations and spectral analysis of measures, Bull. Soc. math. France, Vol. 119, 1991, pp. 33-90. Zbl0748.43001MR1101939
- [12] J. Kwiátkowski (Jr) and M. Lemańczyk, On the multiplicity function of ergodic group extensions 2, Studia Math., Vol. 116, 1995, pp. 207-215. Zbl0857.28012MR1360702
- [13] M. Keane, Generalized Morse sequences, Z. Wahr. Verw. Geb., Vol. 10, 1968, pp. 335-353. Zbl0162.07201MR239047
- [14] M. Keane, Strongly mixing g-measures, Inventiones Math., Vol. 16, 1972, pp. 309-324. Zbl0241.28014MR310193
- [15] S.J. Kilmer and S. Saeki, On Riesz product measures; mutual absolute continuity and singularity, Ann. Inst. Fourier, Vol. 32, 1988, pp. 63-93. Zbl0633.43001MR949011
- [16] J. Martin, Generalized Morse sequences on n symbols, Proc. of the A.M.S., Vol. 54, 1976, pp. 379-383. Zbl0317.54054MR391058
- [17] M. Osikawa, Point spectrum of non-singular flows, Publ. Res. Inst. Math. Sci. Kyoto Univ., Vol. 13, 1977, pp. 167-172. Zbl0369.28016MR453981
- [18] M. Queffélec, Substitution Dynamical Systems-Spectral Analysis, In A. Dold and B. Eckmann, editors, Lecture Notes in Mathematics, Vol. 1294. Springer-Verlag, 1987. Zbl0642.28013MR924156
- [19] A. Renyi, Calcul des probabilités, Dunod, Paris, 1966. Zbl0141.14702MR202161
- [20] G. Ritter, On Kakutani's theorem for infinite products of not necessarily independant functions, Math. Ann., Vol. 239, 1979, pp. 35-53. Zbl0377.28004MR516058
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.