Spectres de M-extensions aléatoires

Mélanie Guenais

Annales de l'I.H.P. Probabilités et statistiques (1999)

  • Volume: 35, Issue: 2, page 239-259
  • ISSN: 0246-0203

How to cite

top

Guenais, Mélanie. "Spectres de M-extensions aléatoires." Annales de l'I.H.P. Probabilités et statistiques 35.2 (1999): 239-259. <http://eudml.org/doc/77629>.

@article{Guenais1999,
author = {Guenais, Mélanie},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {M-extension; spectral singularity; spectral continuity; cocycle; abelian group; Haar measure; Morse extension},
language = {fre},
number = {2},
pages = {239-259},
publisher = {Gauthier-Villars},
title = {Spectres de M-extensions aléatoires},
url = {http://eudml.org/doc/77629},
volume = {35},
year = {1999},
}

TY - JOUR
AU - Guenais, Mélanie
TI - Spectres de M-extensions aléatoires
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 2
SP - 239
EP - 259
LA - fre
KW - M-extension; spectral singularity; spectral continuity; cocycle; abelian group; Haar measure; Morse extension
UR - http://eudml.org/doc/77629
ER -

References

top
  1. [1] J. Aaronson and M. Nadkarni, L∞-eigenvalues and L2-spectra of non singular tranformations, Proc. London Math. Soc., Vol. 55, 1987, pp. 538-570. Zbl0636.28010MR907232
  2. [2] J. Bourgain, On the spectral type of Ornstein's class one transformations, Israel J. of Math., Vol. 84, 1993, pp. 53-63. Zbl0787.28011MR1244658
  3. [3] R.V. Chacon, A geometric construction of measure-preserving transformations, Proc. Fifth Berkeley Symp. Math. Stat. Proba., 1965 pp. 335-360. Zbl0212.08401MR212158
  4. [4] J. Choksi and M. Nadkarni, The maximal spectral type of a rank one transformation, Canad. Math. Bull., Vol. 37, 1994, pp. 29-36. Zbl0793.28013MR1261554
  5. [5] J. Choksi and M. Nadkarni, The group of eigenvalues of a rank one transformation, Canad. Math. Bull., Vol. 38, 1995, pp. 42-54. Zbl0833.28008MR1319899
  6. [6] S. Ferenczi, Systèmes de rang fini, Thèse, 1990. 
  7. [7] G.R. Goodson, J. Kwiatkowski, M. Lemańczyk and P. Liardet, On the multiplicity function of ergodic group extensions of rotations, Studia Math., Vol. 102, 1992, pp. 157-174. Zbl0830.28009MR1169284
  8. [8] M. Guenais, Morse cocycles and simple Lebesgue spectrum, à paraître dans Erg. Th. Dyn. Syst., 1998. Zbl1031.37006MR1685402
  9. [9] H. Helson, Cocycles on the circle, J. Operator Th., Vol. 16, 1986, pp. 189-199. Zbl0644.43003MR847339
  10. [10] H. Helson and W. Parry, Cocycles and spectra, Arkiv für Math., Vol. 16, 1978, pp. 195-206. Zbl0401.28018MR524748
  11. [11] B. Host, J.F. Méla and F. Parreau, Non singular transformations and spectral analysis of measures, Bull. Soc. math. France, Vol. 119, 1991, pp. 33-90. Zbl0748.43001MR1101939
  12. [12] J. Kwiátkowski (Jr) and M. Lemańczyk, On the multiplicity function of ergodic group extensions 2, Studia Math., Vol. 116, 1995, pp. 207-215. Zbl0857.28012MR1360702
  13. [13] M. Keane, Generalized Morse sequences, Z. Wahr. Verw. Geb., Vol. 10, 1968, pp. 335-353. Zbl0162.07201MR239047
  14. [14] M. Keane, Strongly mixing g-measures, Inventiones Math., Vol. 16, 1972, pp. 309-324. Zbl0241.28014MR310193
  15. [15] S.J. Kilmer and S. Saeki, On Riesz product measures; mutual absolute continuity and singularity, Ann. Inst. Fourier, Vol. 32, 1988, pp. 63-93. Zbl0633.43001MR949011
  16. [16] J. Martin, Generalized Morse sequences on n symbols, Proc. of the A.M.S., Vol. 54, 1976, pp. 379-383. Zbl0317.54054MR391058
  17. [17] M. Osikawa, Point spectrum of non-singular flows, Publ. Res. Inst. Math. Sci. Kyoto Univ., Vol. 13, 1977, pp. 167-172. Zbl0369.28016MR453981
  18. [18] M. Queffélec, Substitution Dynamical Systems-Spectral Analysis, In A. Dold and B. Eckmann, editors, Lecture Notes in Mathematics, Vol. 1294. Springer-Verlag, 1987. Zbl0642.28013MR924156
  19. [19] A. Renyi, Calcul des probabilités, Dunod, Paris, 1966. Zbl0141.14702MR202161
  20. [20] G. Ritter, On Kakutani's theorem for infinite products of not necessarily independant functions, Math. Ann., Vol. 239, 1979, pp. 35-53. Zbl0377.28004MR516058

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.