An index formula for chains

Robin Harte; Woo Lee

Studia Mathematica (1995)

  • Volume: 116, Issue: 3, page 283-294
  • ISSN: 0039-3223

Abstract

top
We derive a formula for the index of Fredholm chains on normed spaces.

How to cite

top

Harte, Robin, and Lee, Woo. "An index formula for chains." Studia Mathematica 116.3 (1995): 283-294. <http://eudml.org/doc/216234>.

@article{Harte1995,
abstract = {We derive a formula for the index of Fredholm chains on normed spaces.},
author = {Harte, Robin, Lee, Woo},
journal = {Studia Mathematica},
keywords = {Fredholm complex; Euler number; Fredholm chain of bounded operators; index formula},
language = {eng},
number = {3},
pages = {283-294},
title = {An index formula for chains},
url = {http://eudml.org/doc/216234},
volume = {116},
year = {1995},
}

TY - JOUR
AU - Harte, Robin
AU - Lee, Woo
TI - An index formula for chains
JO - Studia Mathematica
PY - 1995
VL - 116
IS - 3
SP - 283
EP - 294
AB - We derive a formula for the index of Fredholm chains on normed spaces.
LA - eng
KW - Fredholm complex; Euler number; Fredholm chain of bounded operators; index formula
UR - http://eudml.org/doc/216234
ER -

References

top
  1. [1] E. Albrecht and F.-H. Vasilescu, Semi-Fredholm Complexes, Oper. Theory Adv. Appl. 11, Birkhäuser, 1983. 
  2. [2] E. Albrecht and F.-H. Vasilescu, Stability of the index of a complex of Banach spaces, J. Funct. Anal. 66 (1986), 141-172. Zbl0592.47008
  3. [3] C.-G. Ambrozie, Stability of the index of a Fredholm symmetrical pair, J. Operator Theory 25 (1991), 61-77. Zbl0783.47010
  4. [4] S. R. Cardus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Dekker, New York, 1974. Zbl0299.46062
  5. [5] B. Booss and D. D. Bleecker, Topology and Analysis: The Atiyah-Singer Index Formula and Guage-Theoretic Physics, Springer, 1985. Zbl0551.58031
  6. [6] R. E. Curto, Fredholm and invertible tuples of operators. The deformation problem, Trans. Amer. Math. Soc. 266 (1981), 129-159. Zbl0457.47017
  7. [7] R. E. Harte, Invertibility, singularity and Joseph L. Taylor, Proc. Roy. Irish Acad. Sect. A 81 (1981), 399-406. 
  8. [8] R. E. Harte, Fredholm, Weyl and Browder theory, ibid. 85 (1985), 151-176. 
  9. [9] R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Dekker, New York, 1988. Zbl0636.47001
  10. [10] R. E. Harte, Index continuity for chains, in: Aportaciones Matematicas en Memoria del Profesor Victor Manuel Onieva Aleixandre, Univ. de Cantabria, Santander, 1991, 199-208; MR 92f:47011. 
  11. [11] R. E. Harte, Taylor exactness and Kato's jump, Proc. Amer. Math. Soc. 119 (1993), 793-802. 
  12. [12] M. Putinar, Some invariants for semi-Fredholm systems of essentially commuting operators, J. Operator Theory 8 (1982), 65-90. Zbl0491.47008
  13. [13] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191. Zbl0233.47024
  14. [14] F.-H. Vasilescu, A characterization of the joint spectrum in Hilbert space, Rev. Roumaine Math. Pures Appl. 22 (1977), 1001-1009. 
  15. [15] F.-H. Vasilescu, On pairs of commuting operators, Studia Math. 62 (1978), 203-207. Zbl0393.47002
  16. [16] F.-H. Vasilescu, Stability of the index of a complex of Banach spaces, J. Operator Theory 2 (1979), 247-275. Zbl0435.47046

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.