An index formula for chains
Studia Mathematica (1995)
- Volume: 116, Issue: 3, page 283-294
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topHarte, Robin, and Lee, Woo. "An index formula for chains." Studia Mathematica 116.3 (1995): 283-294. <http://eudml.org/doc/216234>.
@article{Harte1995,
abstract = {We derive a formula for the index of Fredholm chains on normed spaces.},
author = {Harte, Robin, Lee, Woo},
journal = {Studia Mathematica},
keywords = {Fredholm complex; Euler number; Fredholm chain of bounded operators; index formula},
language = {eng},
number = {3},
pages = {283-294},
title = {An index formula for chains},
url = {http://eudml.org/doc/216234},
volume = {116},
year = {1995},
}
TY - JOUR
AU - Harte, Robin
AU - Lee, Woo
TI - An index formula for chains
JO - Studia Mathematica
PY - 1995
VL - 116
IS - 3
SP - 283
EP - 294
AB - We derive a formula for the index of Fredholm chains on normed spaces.
LA - eng
KW - Fredholm complex; Euler number; Fredholm chain of bounded operators; index formula
UR - http://eudml.org/doc/216234
ER -
References
top- [1] E. Albrecht and F.-H. Vasilescu, Semi-Fredholm Complexes, Oper. Theory Adv. Appl. 11, Birkhäuser, 1983.
- [2] E. Albrecht and F.-H. Vasilescu, Stability of the index of a complex of Banach spaces, J. Funct. Anal. 66 (1986), 141-172. Zbl0592.47008
- [3] C.-G. Ambrozie, Stability of the index of a Fredholm symmetrical pair, J. Operator Theory 25 (1991), 61-77. Zbl0783.47010
- [4] S. R. Cardus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Dekker, New York, 1974. Zbl0299.46062
- [5] B. Booss and D. D. Bleecker, Topology and Analysis: The Atiyah-Singer Index Formula and Guage-Theoretic Physics, Springer, 1985. Zbl0551.58031
- [6] R. E. Curto, Fredholm and invertible tuples of operators. The deformation problem, Trans. Amer. Math. Soc. 266 (1981), 129-159. Zbl0457.47017
- [7] R. E. Harte, Invertibility, singularity and Joseph L. Taylor, Proc. Roy. Irish Acad. Sect. A 81 (1981), 399-406.
- [8] R. E. Harte, Fredholm, Weyl and Browder theory, ibid. 85 (1985), 151-176.
- [9] R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Dekker, New York, 1988. Zbl0636.47001
- [10] R. E. Harte, Index continuity for chains, in: Aportaciones Matematicas en Memoria del Profesor Victor Manuel Onieva Aleixandre, Univ. de Cantabria, Santander, 1991, 199-208; MR 92f:47011.
- [11] R. E. Harte, Taylor exactness and Kato's jump, Proc. Amer. Math. Soc. 119 (1993), 793-802.
- [12] M. Putinar, Some invariants for semi-Fredholm systems of essentially commuting operators, J. Operator Theory 8 (1982), 65-90. Zbl0491.47008
- [13] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191. Zbl0233.47024
- [14] F.-H. Vasilescu, A characterization of the joint spectrum in Hilbert space, Rev. Roumaine Math. Pures Appl. 22 (1977), 1001-1009.
- [15] F.-H. Vasilescu, On pairs of commuting operators, Studia Math. 62 (1978), 203-207. Zbl0393.47002
- [16] F.-H. Vasilescu, Stability of the index of a complex of Banach spaces, J. Operator Theory 2 (1979), 247-275. Zbl0435.47046
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.