Sur la caractérisation topologique des compacts à l'aide des demi-treillis des pseudométriques continues

Taras Banakh

Studia Mathematica (1995)

  • Volume: 116, Issue: 3, page 303-310
  • ISSN: 0039-3223

Abstract

top
For a Tikhonov space X we denote by Pc(X) the semilattice of all continuous pseudometrics on X. It is proved that compact Hausdorff spaces X and Y are homeomorphic if and only if there is a positive-homogeneous (or an additive) semi-lattice isomorphism T:Pc(X) → Pc(Y). A topology on Pc(X) is called admissible if it is intermediate between the compact-open and pointwise topologies on Pc(X). Another result states that Tikhonov spaces X and Y are homeomorphic if and only if there exists a positive-homogeneous (or an additive) semi-lattice homeomorphism T : ( P c ( X ) , τ X ) ( P c ( Y ) , τ Y ) , where τ X , τ Y are admissible topologies on Pc(X) and Pc(Y).

How to cite

top

Banakh, Taras. "Sur la caractérisation topologique des compacts à l'aide des demi-treillis des pseudométriques continues." Studia Mathematica 116.3 (1995): 303-310. <http://eudml.org/doc/216237>.

@article{Banakh1995,
author = {Banakh, Taras},
journal = {Studia Mathematica},
keywords = {Tikhonov space; semilattice of all continuous pseudometrics; admissible topologies},
language = {fre},
number = {3},
pages = {303-310},
title = {Sur la caractérisation topologique des compacts à l'aide des demi-treillis des pseudométriques continues},
url = {http://eudml.org/doc/216237},
volume = {116},
year = {1995},
}

TY - JOUR
AU - Banakh, Taras
TI - Sur la caractérisation topologique des compacts à l'aide des demi-treillis des pseudométriques continues
JO - Studia Mathematica
PY - 1995
VL - 116
IS - 3
SP - 303
EP - 310
LA - fre
KW - Tikhonov space; semilattice of all continuous pseudometrics; admissible topologies
UR - http://eudml.org/doc/216237
ER -

References

top
  1. [Ba] S. Banach, Théorie des opérations linéaires, Warszawa, 1932. Zbl0005.20901
  2. [En] R. Engelking, General Topology, PWN, Warszawa, 1977. 
  3. [GK] I. M. Gelfand and A. N. Kolmogoroff [A. N. Kolmogorov], On rings of continuous functions on topological spaces, Dokl. Akad. Nauk SSSR 22 (1939), 11-15. Zbl65.0500.03
  4. [Ka] I. Kaplansky, Lattices of continuous functions, Bull. Amer. Math. Soc. 53 (1947), 617-623. Zbl0031.21902
  5. [Se] Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa, 1971. 
  6. [Sh] T. Shirota, A generalization of a theorem of I. Kaplansky, Osaka Math. J. 4 (1952), 121-132. Zbl0048.08902

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.