# Open mapping theorem and inversion theorem for γ-paraconvex multivalued mappings and applications

Studia Mathematica (1996)

- Volume: 117, Issue: 2, page 123-136
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topJourani, Abderrahim. "Open mapping theorem and inversion theorem for γ-paraconvex multivalued mappings and applications." Studia Mathematica 117.2 (1996): 123-136. <http://eudml.org/doc/216247>.

@article{Jourani1996,

abstract = {We extend the open mapping theorem and inversion theorem of Robinson for convex multivalued mappings to γ-paraconvex multivalued mappings. Some questions posed by Rolewicz are also investigated. Our results are applied to obtain a generalization of the Farkas lemma for γ-paraconvex multivalued mappings.},

author = {Jourani, Abderrahim},

journal = {Studia Mathematica},

keywords = {-paraconvex multivalued mapping; open mapping theorem; inversion theorem; Lipschitz property; Farkas lemma},

language = {eng},

number = {2},

pages = {123-136},

title = {Open mapping theorem and inversion theorem for γ-paraconvex multivalued mappings and applications},

url = {http://eudml.org/doc/216247},

volume = {117},

year = {1996},

}

TY - JOUR

AU - Jourani, Abderrahim

TI - Open mapping theorem and inversion theorem for γ-paraconvex multivalued mappings and applications

JO - Studia Mathematica

PY - 1996

VL - 117

IS - 2

SP - 123

EP - 136

AB - We extend the open mapping theorem and inversion theorem of Robinson for convex multivalued mappings to γ-paraconvex multivalued mappings. Some questions posed by Rolewicz are also investigated. Our results are applied to obtain a generalization of the Farkas lemma for γ-paraconvex multivalued mappings.

LA - eng

KW - -paraconvex multivalued mapping; open mapping theorem; inversion theorem; Lipschitz property; Farkas lemma

UR - http://eudml.org/doc/216247

ER -

## References

top- [1] J. M. Borwein and D. M. Zhuang, Verifiable necessary and sufficient conditions for regularity of set-valued and single-valued maps, J. Math. Anal. Appl. 134 (1988), 441-459. Zbl0654.49004
- [2] F. H. Clarke, A new approach to Lagrange multipliers, Math. Oper. Res. 1 (1976), 165-174. Zbl0404.90100
- [3] R. Cominetti, Metric regularity, tangent sets and second-order optimality conditions, Appl. Math. Optim. 21 (1990), 265-288. Zbl0692.49018
- [4] S. Dolecki, Open relation theorem without closedness assumption, Proc. Amer. Math. Soc. 109 (1990), 1019-1024. Zbl0721.46003
- [5] B. M. Glover, V. Jeyakumar and W. Oettli, A Farkas lamma for difference sublinear systems and quasi-differentiable programming, Math. Programming 63 (1994), 109-125. Zbl0804.49015
- [6] J. Gwinner, Results of Farkas type, Numer. Funct. Anal. Optim. 9 (1987), 471-520. Zbl0598.49017
- [7] V. Jeyakumar, A general Farkas lemma and characterization of optimality for a nonsmooth program involving convex processes, J. Optim. Theory Appl. 55 (1987), 449-461. Zbl0616.90072
- [8] A. Jourani, Intersection formulae and the marginal function in Banach spaces, J. Math. Anal. Appl. 192 (1995), 867-891. Zbl0831.46044
- [9] A. Jourani, Subdifferentiability and subdifferential monotonicity of γ-paraconvex functions, 1995, submitted. Zbl0862.49018
- [10] A. Jourani and L. Thibault, The use of metric graphical regularity in approximate subdifferential calculus rule in finite dimensions, Optimization 21 (1990), 509-519. Zbl0721.49018
- [11] J.-P. Penot, Metric regularity, openness and Lipschitzian behavior of multifunctions, Nonlinear Anal. 13 (1989), 629-643. Zbl0687.54015
- [12] S. M. Robinson, Regularity and stability for convex multivalued functions, Math. Oper. Res. 1 (1976), 130-143. Zbl0418.52005
- [13] R. T. Rockafellar, Extensions of subgradient calculus with applications to optimization, Nonlinear Anal. 9 (1985), 665-698. Zbl0593.49013
- [14] S. Rolewicz, On paraconvex multifunctions, Oper. Res. Verfahren 31 (1979), 539-546. Zbl0403.49021
- [15] S. Rolewicz, On γ-paraconvex multifunctions, Math. Japon. 24 (1979), 293-300. Zbl0434.54009
- [16] S. Rolewicz, On conditions warranting ${\Phi}_{2}$-subdifferentiability, Math. Programming Study 14 (1981), 215-224. Zbl0444.90106
- [17] K. Shimizu, E. Aiyoshi and R. Katayama, Generalized Farkas's theorem and optimization of infinitely constrained problems, J. Optim. Theory Appl. 40 (1983), 451-462. Zbl0494.90062
- [18] C. Swartz, A general Farkas lemma, ibid. 46 (1985), 237-244. Zbl0543.49010
- [19] C. Ursescu, Multifunctions with convex closed graph, Czechoslovak Math. J. 7 (1975), 438-441.
- [20] D. E. Ward and J. M. Borwein, Nonsmooth calculus in finite dimensions, SIAM J. Control Optim. 25 (1987), 1312-1340. Zbl0633.46043
- [21] C. Zalinescu, On Gwinner's paper "Results of Farkas type", Numer. Funct. Anal. Optim. 10 (1989), 401-414. Zbl0679.49024

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.