Jordan polynomials can be analytically recognized

M. Cabrera Garcia; A. Moreno Galindo; A. Rodríguez Palacios; E. Zel'manov

Studia Mathematica (1996)

  • Volume: 117, Issue: 2, page 137-147
  • ISSN: 0039-3223

Abstract

top
We prove that there exists a real or complex central simple associative algebra M with minimal one-sided ideals such that, for every non-Jordan associative polynomial p, a Jordan-algebra norm can be given on M in such a way that the action of p on M becomes discontinuous.

How to cite

top

Cabrera Garcia, M., et al. "Jordan polynomials can be analytically recognized." Studia Mathematica 117.2 (1996): 137-147. <http://eudml.org/doc/216248>.

@article{CabreraGarcia1996,
abstract = {We prove that there exists a real or complex central simple associative algebra M with minimal one-sided ideals such that, for every non-Jordan associative polynomial p, a Jordan-algebra norm can be given on M in such a way that the action of p on M becomes discontinuous.},
author = {Cabrera Garcia, M., Moreno Galindo, A., Rodríguez Palacios, A., Zel'manov, E.},
journal = {Studia Mathematica},
keywords = {central simple associative algebra; minimal one-sided ideals; non-Jordan associative polynomial; Jordan algebra norm},
language = {eng},
number = {2},
pages = {137-147},
title = {Jordan polynomials can be analytically recognized},
url = {http://eudml.org/doc/216248},
volume = {117},
year = {1996},
}

TY - JOUR
AU - Cabrera Garcia, M.
AU - Moreno Galindo, A.
AU - Rodríguez Palacios, A.
AU - Zel'manov, E.
TI - Jordan polynomials can be analytically recognized
JO - Studia Mathematica
PY - 1996
VL - 117
IS - 2
SP - 137
EP - 147
AB - We prove that there exists a real or complex central simple associative algebra M with minimal one-sided ideals such that, for every non-Jordan associative polynomial p, a Jordan-algebra norm can be given on M in such a way that the action of p on M becomes discontinuous.
LA - eng
KW - central simple associative algebra; minimal one-sided ideals; non-Jordan associative polynomial; Jordan algebra norm
UR - http://eudml.org/doc/216248
ER -

References

top
  1. [1] R. Arens and M. Goldberg, Quadrative seminorms and Jordan structures on algebras, Linear Algebra Appl. 181 (1993), 269-278. Zbl0827.46047
  2. [2] R. Arens, M. Goldberg and W. A. J. Luxemburg, Multiplicativity factors for seminorms II, J. Math. Anal. Appl. 170 (1992), 401-413. Zbl0796.46034
  3. [3] M. Cabrera, A. Moreno and A. Rodríguez, Zel'manov's theorem for primitive Jordan-Banach algebras, J. London Math. Soc., to appear. Zbl0922.17019
  4. [4] M. Cabrera, A. Moreno and A. Rodríguez, On the behaviour of Jordan-algebra norms on associative algebras, Studia Math. 113 (1995), 81-100. Zbl0826.17038
  5. [5] M. Cabrera and A. Rodríguez, Zel'manov's theorem for normed simple Jordan algebras with a unit, Bull. London Math. Soc. 25 (1993), 59-63. 
  6. [6] M. Cabrera and A. Rodríguez, Non-degenerately ultraprime Jordan-Banach algebras: a zel'manovian treatment, Proc. London Math. Soc. 69 (1994), 576-604. Zbl0809.46044
  7. [7] A. Fernández, E. García and A. Rodríguez, A Zel'manov prime theorem for JB*-algebras, J. London Math. Soc. 46 (1992), 319-335. Zbl0723.17025
  8. [8] N. Jacobson, Lectures in Abstract Algebra. II. Linear Algebra, Grad. Texts in Math. 31, Springer, New York, 1953. 
  9. [9] N. Jacobson, Structure and Representations of Jordan Algebras, Amer. Math. Soc. Colloq. Publ. 39, Providence, R.I., 1968. 
  10. [10] J. M. Osborn and M. L. Racine, Jordan rings with nonzero socle, Trans. Amer. Math. Soc. 251 (1979), 375-387. Zbl0409.17014
  11. [11] J. Pérez, L. Rico, A. Rodríguez and A. R. Villena, Prime Jordan-Banach algebras with nonzero socle, Comm. Algebra 20 (1992), 17-53. Zbl0742.17028
  12. [12] H.-G. Quebbemann, A representation theorem for algebras with involution, Linear Algebra Appl. 94 (1987), 193-195. Zbl0621.16013
  13. [13] C. E. Rickart, General Theory of Banach Algebras, Krieger, New York, 1974. Zbl0275.46045
  14. [14] A. Rodríguez, La continuidad del producto de Jordan implica la del ordinario en el caso completo semiprimo, in: Contribuciones en Probabilidad, Estadí stica Matemática, Enseñanza de la Matemática y Análisis, Secretariado de Publicaciones de la Universidad de Granada, Granada, 1979, 280-288. 
  15. [15] A. Rodríguez, Jordan axioms for C*-algebras, Manuscripta Math. 61 (1988), 297-314. 
  16. [16] A. Rodríguez, Jordan structures in analysis, in: Jordan Algebras, Proc. Conf. Oberwolfach, August 9-15, 1992, W. Kaup, K. McCrimmon and H. Petersson (eds.), de Gruyter, Berlin, 1994, 97-186. Zbl0818.17036
  17. [17] A. Rodríguez, A. Slin'ko and E. Zel'manov, Extending the norm from Jordan-Banach algebras of hermitian elements to their associative envelopes, Comm. Algebra 22 (1994), 1435-1455. Zbl0806.17033
  18. [18] E. Zel'manov, On prime Jordan algebras II, Siberian Math. J. 24 (1983), 89-104. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.