The triple-norm extension problem: the nondegenerate complete case.

A. Moreno Galindo

Studia Mathematica (1999)

  • Volume: 136, Issue: 1, page 91-97
  • ISSN: 0039-3223

Abstract

top
We prove that, if A is an associative algebra with two commuting involutions τ and π, if A is a τ-π-tight envelope of the Jordan Triple System T:=H(A,τ) ∩ S(A,π), and if T is nondegenerate, then every complete norm on T making the triple product continuous is equivalent to the restriction to T of an algebra norm on A.

How to cite

top

Moreno Galindo, A.. "The triple-norm extension problem: the nondegenerate complete case.." Studia Mathematica 136.1 (1999): 91-97. <http://eudml.org/doc/216663>.

@article{MorenoGalindo1999,
abstract = {We prove that, if A is an associative algebra with two commuting involutions τ and π, if A is a τ-π-tight envelope of the Jordan Triple System T:=H(A,τ) ∩ S(A,π), and if T is nondegenerate, then every complete norm on T making the triple product continuous is equivalent to the restriction to T of an algebra norm on A.},
author = {Moreno Galindo, A.},
journal = {Studia Mathematica},
keywords = {Jordan triple systems; JB*-triples; norm extension problem; 3NEP; triple-norm extension problem; Jordan triple system; triple product; principle of uniform boundedness},
language = {eng},
number = {1},
pages = {91-97},
title = {The triple-norm extension problem: the nondegenerate complete case.},
url = {http://eudml.org/doc/216663},
volume = {136},
year = {1999},
}

TY - JOUR
AU - Moreno Galindo, A.
TI - The triple-norm extension problem: the nondegenerate complete case.
JO - Studia Mathematica
PY - 1999
VL - 136
IS - 1
SP - 91
EP - 97
AB - We prove that, if A is an associative algebra with two commuting involutions τ and π, if A is a τ-π-tight envelope of the Jordan Triple System T:=H(A,τ) ∩ S(A,π), and if T is nondegenerate, then every complete norm on T making the triple product continuous is equivalent to the restriction to T of an algebra norm on A.
LA - eng
KW - Jordan triple systems; JB*-triples; norm extension problem; 3NEP; triple-norm extension problem; Jordan triple system; triple product; principle of uniform boundedness
UR - http://eudml.org/doc/216663
ER -

References

top
  1. [ACCM] J. A. Anquela, T. Cortés, K. McCrimmon and F. Montaner, Strong primeness of hermitian Jordan systems, J. Algebra 198 (1997), 311-326. Zbl0904.17024
  2. [CMR1] M. Cabrera, A. Moreno and A. Rodríguez, On the behaviour of Jordan-algebra norms on associative algebras, Studia Math. 113 (1995), 81-100. Zbl0826.17038
  3. [CMR2] M. Cabrera, A. Moreno and A. Rodríguez, Normed versions of the Zel'manov prime theorem: positive results and limits, in: In Operator Theory, Operator Algebras and Related Topics (Timişoara, 1996), A. Gheondea, R. N. Gologan, and D. Timotin (eds.), The Theta Foundation, Bucharest, 1997, 65-77. 
  4. [CMR3] M. Cabrera, A. Moreno and A. Rodríguez, Zel'manov theorem for primitive Jordan-Banach algebras, J. London Math. Soc. (2) 57 (1998), 231-244. 
  5. [CMRZ] M. Cabrera, A. Moreno, A. Rodríguez and E. Zel'manov, Jordan polynomials can be analytically recognized, Studia Math. 117 (1996), 137-147. Zbl0852.17033
  6. [CR1] M. Cabrera and A. Rodríguez, Zel'manov theorem for normed simple Jordan algebras with a unit, Bull. London Math. Soc. 25 (1993), 59-63. 
  7. [CR2] M. Cabrera and A. Rodríguez, Nondegenerately ultraprime Jordan-Banach algebras: a Zel'manovian treatment, Proc. London Math. Soc. 69 (1994), 576-604. Zbl0809.46044
  8. [D'A] A. D'Amour, Quadratic Jordan systems of hermitian type, J. Algebra 149 (1992), 197-233. 
  9. [D'AM] A. D'Amour and K. McCrimmon, The structure of quadratic Jordan systems of Clifford type, submitted to J. Algebra. 
  10. [FGR] A. Fernández, E. García and A. Rodríguez, A Zel'manov prime theorem for JB*-algebras, J. London Math. Soc. 46 (1992), 319-335. 
  11. [Mor1] A. Moreno, Distinguishing Jordan polynomials by means of a single Jordan-algebra norm, Studia Math. 122 (1997), 67-73. Zbl0887.46031
  12. [Mor2] A. Moreno, Extending the norm from special Jordan Triple Systems to their associative envelope, in: Banach Algebras'97, E. Albrecht and M. Mathieu (eds.), de Gruyter, Berlin, 1998, 363-375. Zbl0973.46044
  13. [MR1] A. Moreno and A. Rodríguez, The norm extension problem: positive results and limits, Extracta Math. 12 (1997), 165-171. Zbl0899.46031
  14. [MR2] A. Moreno and A. Rodríguez, Algebra norms on tensor products of algebras and the norm extension problem, Linear Algebra Appl. 269 (1998), 257-305. Zbl0887.15031
  15. [Rod1] A . Rodríguez, Jordan structures in Analysis, in: Jordan Algebras (Oberwolfach, 1992), W. Kaup, K. McCrimmon, and H. Petersson (eds.), de Gruyter, Berlin, 1994, 97-186. 
  16. [RSZ] A. Rodríguez, A. Slin'ko and E. Zel'manov, Extending the norm from Jordan-Banach algebras of hermitian elements to their associative envelopes, Comm. Algebra 22 (1994), 1435-1455. Zbl0806.17033
  17. [Zel1] E. I. Zel'manov, On prime Jordan algebras II, Sibirsk. Mat. Zh. 24 (1983), no. 1, 89-104 (in Russian). 
  18. [Zel2] E. I. Zel'manov, On prime Jordan triple systems, ibid. 24 (1983), no. 4, 23-37 (in Russian). 
  19. [Zel3] E. I. Zel'manov, On prime Jordan triple systems II, ibid. 25 (1984), no. 5, 50-61 (in Russian). 
  20. [Zel4] E. I. Zel'manov, On prime Jordan triple systems III, ibid. 26 (1985), no. 1, 71-82 (in Russian). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.