Régularité Besov des trajectoires du processus intégral de Skorokhod

Gérard Lorang

Studia Mathematica (1996)

  • Volume: 117, Issue: 3, page 205-223
  • ISSN: 0039-3223

Abstract

top
Let W t : 0 t 1 be a linear Brownian motion, starting from 0, defined on the canonical probability space (Ω,ℱ,P). Consider a process u t : 0 t 1 belonging to the space 2 , 1 (see Definition II.2). The Skorokhod integral U t = ʃ 0 t u δ W is then well defined, for every t ∈ [0,1]. In this paper, we study the Besov regularity of the Skorokhod integral process t U t . More precisely, we prove the following THEOREM III.1. (1)If 0 < α < 1/2 and u p , 1 with 1/α < p < ∞, then a.s. t U t p , q α for all q ∈ [1,∞], and t U t p , α , 0 . (2) For every even integer p ≥ 4, if there exists δ > 2(p+1) such that u δ , 2 ( [ 0 , 1 ] × Ω ) , then a.s. t U t p , 1 / 2 . (For the definition of the Besov spaces p , q α and p , α , 0 , see Section I; for the definition of the spaces p , 1 and p , 2 , p 2 , see Definition II.2.) An analogous result for the classical Itô integral process has been obtained by B. Roynette in [R]. Let us finally observe that D. Nualart and E. Pardoux [NP] showed that the Skorokhod integral process t U t admits an a.s. continuous modification, under smoothness conditions on the integrand similar to those stated in Theorem II.1 (cf. Theorems 5.2 and 5.3 of [NP]).

How to cite

top

Lorang, Gérard. "Régularité Besov des trajectoires du processus intégral de Skorokhod." Studia Mathematica 117.3 (1996): 205-223. <http://eudml.org/doc/216252>.

@article{Lorang1996,
author = {Lorang, Gérard},
journal = {Studia Mathematica},
keywords = {Besov regularity; Skorokhod integral},
language = {fre},
number = {3},
pages = {205-223},
title = {Régularité Besov des trajectoires du processus intégral de Skorokhod},
url = {http://eudml.org/doc/216252},
volume = {117},
year = {1996},
}

TY - JOUR
AU - Lorang, Gérard
TI - Régularité Besov des trajectoires du processus intégral de Skorokhod
JO - Studia Mathematica
PY - 1996
VL - 117
IS - 3
SP - 205
EP - 223
LA - fre
KW - Besov regularity; Skorokhod integral
UR - http://eudml.org/doc/216252
ER -

References

top
  1. [BI] M. T. Barlow and P. Imkeller, On some sample path properties of Skorokhod integral processes, in: Séminaire de Probabilités, XXVI, Lecture Notes in Math. 1526, Springer, Berlin, 1992, 1992, 70-80. Zbl0761.60047
  2. [BL] J. Bergh and J. Löfström, Interpolation Spaces: An Introduction, Springer, Berlin, 1976. Zbl0344.46071
  3. [B] R. Buckdahn, Quasilinear partial stochastic differential equations without non-anticipation requirement, preprint 176, Humboldt-Universität Berlin, 1988. 
  4. [C] Z. Ciesielski, On the isomorphisms of the spaces H α and m, Bull. Acad. Polon. Sci. 8 (1960), 217-222. Zbl0093.12301
  5. [CKR] Z. Ciesielski, G. Kerkyacharian et B. Roynette, Quelques espaces fonctionnels associés à des processus gaussiens, Studia Math. 107 (1993), 171-204. 
  6. [GT] B. Gaveau et P. Trauber, L'intégrale stochastique comme opérateur de divergence dans l'espace fonctionnel, J. Funct. Anal. 46 (1982), 230-238. Zbl0488.60068
  7. [I1] P. Imkeller, Regularity of Skorohod integral based on integrands in a finite Wiener chaos, Probab. Theory Related Fields 98 (1994), 137-142. Zbl0792.60047
  8. [I2] P. Imkeller, Occupation densities for stochastic integral processes in the second Wiener chaos, ibid. 91 (1992), 1-24. 
  9. [NP] D. Nualart and E. Pardoux, Stochastic calculus with anticipating integrands, ibid. 78 (1988), 535-581. Zbl0629.60061
  10. [NZ] D. Nualart and M. Zakai, Generalized stochastic integrals and the Malliavin calculus, ibid. 73 (1986), 255-280. Zbl0601.60053
  11. [PP] E. Pardoux and Ph. Protter, A two-sided stochastic integral and its calculus, ibid. 76 (1987), 15-49. 
  12. [P] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Ser. I, 1976. Zbl0356.46038
  13. [R] B. Roynette, Mouvement Brownien et espaces de Besov, Stochastics Stochastics Rep. 43 (1993), 221-260. 
  14. [S] A. V. Skorokhod, On a generalization of a stochastic integral, Theory Probab. Appl. 20 (1975), 219-233. Zbl0333.60060
  15. [W] S. Watanabe, Lectures on Stochastic Differential Equations and Malliavin Calculus, Tata Institute of Fundamental Research, Springer, Berlin, 1984. Zbl0546.60054

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.