Algebras of holomorphic functions with Hadamard multiplication

Hermann Render; Andreas Sauer

Studia Mathematica (1996)

  • Volume: 118, Issue: 1, page 77-100
  • ISSN: 0039-3223

Abstract

top
A systematic investigation of algebras of holomorphic functions endowed with the Hadamard product is given. For example we show that the set of all non-invertible elements is dense and that each multiplicative functional is continuous, answering some questions in the literature.

How to cite

top

Render, Hermann, and Sauer, Andreas. "Algebras of holomorphic functions with Hadamard multiplication." Studia Mathematica 118.1 (1996): 77-100. <http://eudml.org/doc/216265>.

@article{Render1996,
abstract = {A systematic investigation of algebras of holomorphic functions endowed with the Hadamard product is given. For example we show that the set of all non-invertible elements is dense and that each multiplicative functional is continuous, answering some questions in the literature.},
author = {Render, Hermann, Sauer, Andreas},
journal = {Studia Mathematica},
keywords = {Hadamard product; $B_0$-algebras; multiplicative functionals; -algebras; algebras of holomorphic functions; non-invertible elements; multiplicative functional; continuous},
language = {eng},
number = {1},
pages = {77-100},
title = {Algebras of holomorphic functions with Hadamard multiplication},
url = {http://eudml.org/doc/216265},
volume = {118},
year = {1996},
}

TY - JOUR
AU - Render, Hermann
AU - Sauer, Andreas
TI - Algebras of holomorphic functions with Hadamard multiplication
JO - Studia Mathematica
PY - 1996
VL - 118
IS - 1
SP - 77
EP - 100
AB - A systematic investigation of algebras of holomorphic functions endowed with the Hadamard product is given. For example we show that the set of all non-invertible elements is dense and that each multiplicative functional is continuous, answering some questions in the literature.
LA - eng
KW - Hadamard product; $B_0$-algebras; multiplicative functionals; -algebras; algebras of holomorphic functions; non-invertible elements; multiplicative functional; continuous
UR - http://eudml.org/doc/216265
ER -

References

top
  1. [1] S. Agmon, On the singularities of Taylor series with reciprocal coefficients, Pacific J. Math. 2 (1952), 431-453. Zbl0047.31201
  2. [2] M. Akkar, M. El Azhari and M. Oudadess, Continuité des caractères dans les algèbres de Fréchet à bases, Canad. Math. Bull. 31 (1988), 168-174. 
  3. [3] N. U. Arakelyan, On efficient analytic continuation of power series, Math. USSR-Sb. 52 (1985), 21-39. Zbl0571.30003
  4. [4] E. Beckenstein, L. Narici and C. Suffel, Topological Algebras, North-Holland, Amsterdam, 1977. 
  5. [5] R. P. Boas, Jr., Entire Functions, Academic Press, New York, 1954. Zbl66.0355.01
  6. [6] E. Borel, Sur les singularités des séries de Taylor, Bull. Soc. Math. France 26 (1898), 238-248. Zbl29.0210.03
  7. [7] R. M. Brooks, A ring of analytic functions, Studia Math. 24 (1964), 191-210. Zbl0199.46201
  8. [8] R. M. Brooks, A ring of analytic functions, II, ibid. 39 (1971), 199-208. Zbl0213.40303
  9. [9] R. Brück and J. Müller, Invertible elements in a convolution algebra of holomorphic functions, Math. Ann. 294 (1992), 421-438. Zbl0769.30002
  10. [10] R. Brück and J. Müller, Closed ideals in a convolution algebra of holomorphic functions, Canad. J. Math., to appear. Zbl0836.30002
  11. [11] S. El-Helaly and T. Husain, Orthogonal bases are Schauder bases and a characterization of Φ-algebras, Pacific J. Math. 132 (1988), 265-275. Zbl0654.46011
  12. [12] T. Husain and S. Watson, Topological algebras with orthogonal bases, ibid. 91 (1980), 339-347. Zbl0477.46042
  13. [13] T. Husain and S. Watson, Algebras with unconditional orthogonal bases, Proc. Amer. Math. Soc. 79 (1980), 539-545. Zbl0434.46029
  14. [14] B. Mitiagin, S. Rolewicz and W. Żelazko, Entire functions in B 0 -algebras, Studia Math. 21 (1962), 291-306. Zbl0111.31001
  15. [15] J. Müller, The Hadamard multiplication theorem and applications in summability theory, Complex Variables Theory Appl. 18 (1992), 155-166. Zbl0756.30002
  16. [16] P. K. Raševskiĭ [P. K. Rashevskiĭ], Closed ideals in a countably generated normed algebra of analytic entire functions, Soviet Math. Dokl. 6 (1965), 717-719. Zbl0139.30401
  17. [17] R. Remmert, Funktionentheorie II, Springer, Berlin, 1991. 
  18. [18] W. Żelazko, Banach Algebras, Elsevier, Amsterdam, 1973. 
  19. [19] W. Żelazko, Metric generalizations of Banach algebras, Dissertationes Math. 47 (1965). Zbl0131.13005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.