Metric generalizations of Banach algebras

W. Żelazko

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1965

Abstract

top
CONTENTSPRELIMINARIES§ 0. Introduction.......................................................................................................................................................................3§ 1. Definitions and notation.................................................................................................................................................5Chapter ILOCALLY BOUNDED ALGEBRAS§ 2. Basic facts and examples..............................................................................................................................................6§ 3. Commutative p-normed algebras, spectral form and p-normed field..................................................................8§ 4. Commutative p-normed algebras (continued)..........................................................................................................12§ 5. Analytic functions in p-normed algebras.....................................................................................................................16§ 6. Final remarks...................................................................................................................................................................21Chapter IIF-ALGEBRAS AND TOPOLOGICAL ALGEBRAS§ 7. F-algebras.........................................................................................................................................................................23§ 8. Topological division algebras.......................................................................................................................................26Chapter III B 0 -ALGEBRAS§ 9. Basic facts.........................................................................................................................................................................29§ 10. Multiplicatively convex B0-algebras.........................................................................................................................31§ 11. Spectra and power series in commutative m-convex B 0 -algebras..............................................................34§ 12. Examples of non-m-convex B 0 -algebras..........................................................................................................40§ 13. Extended spectrum; theorem on entire functions and its applications to Q-algebras and radicals.............44§ 14. Elementary properties of entire functions and characterization of commutative B 0 -algebras with and without entire functions..................................................................................................................................................51§ 15. Entire operations in B 0 -spaces and their applications to entire functions.................................................56§ 16. Final remarks.................................................................................................................................................................65References...............................................................................................................................................................................68

How to cite

top

W. Żelazko. Metric generalizations of Banach algebras. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1965. <http://eudml.org/doc/268341>.

@book{W1965,
abstract = {CONTENTSPRELIMINARIES§ 0. Introduction.......................................................................................................................................................................3§ 1. Definitions and notation.................................................................................................................................................5Chapter ILOCALLY BOUNDED ALGEBRAS§ 2. Basic facts and examples..............................................................................................................................................6§ 3. Commutative p-normed algebras, spectral form and p-normed field..................................................................8§ 4. Commutative p-normed algebras (continued)..........................................................................................................12§ 5. Analytic functions in p-normed algebras.....................................................................................................................16§ 6. Final remarks...................................................................................................................................................................21Chapter IIF-ALGEBRAS AND TOPOLOGICAL ALGEBRAS§ 7. F-algebras.........................................................................................................................................................................23§ 8. Topological division algebras.......................................................................................................................................26Chapter III$B_0$-ALGEBRAS§ 9. Basic facts.........................................................................................................................................................................29§ 10. Multiplicatively convex B0-algebras.........................................................................................................................31§ 11. Spectra and power series in commutative m-convex $B_0$-algebras..............................................................34§ 12. Examples of non-m-convex $B_0$-algebras..........................................................................................................40§ 13. Extended spectrum; theorem on entire functions and its applications to Q-algebras and radicals.............44§ 14. Elementary properties of entire functions and characterization of commutative $B_0$-algebras with and without entire functions..................................................................................................................................................51§ 15. Entire operations in $B_0$-spaces and their applications to entire functions.................................................56§ 16. Final remarks.................................................................................................................................................................65References...............................................................................................................................................................................68},
author = {W. Żelazko},
keywords = {functional analysis},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Metric generalizations of Banach algebras},
url = {http://eudml.org/doc/268341},
year = {1965},
}

TY - BOOK
AU - W. Żelazko
TI - Metric generalizations of Banach algebras
PY - 1965
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSPRELIMINARIES§ 0. Introduction.......................................................................................................................................................................3§ 1. Definitions and notation.................................................................................................................................................5Chapter ILOCALLY BOUNDED ALGEBRAS§ 2. Basic facts and examples..............................................................................................................................................6§ 3. Commutative p-normed algebras, spectral form and p-normed field..................................................................8§ 4. Commutative p-normed algebras (continued)..........................................................................................................12§ 5. Analytic functions in p-normed algebras.....................................................................................................................16§ 6. Final remarks...................................................................................................................................................................21Chapter IIF-ALGEBRAS AND TOPOLOGICAL ALGEBRAS§ 7. F-algebras.........................................................................................................................................................................23§ 8. Topological division algebras.......................................................................................................................................26Chapter III$B_0$-ALGEBRAS§ 9. Basic facts.........................................................................................................................................................................29§ 10. Multiplicatively convex B0-algebras.........................................................................................................................31§ 11. Spectra and power series in commutative m-convex $B_0$-algebras..............................................................34§ 12. Examples of non-m-convex $B_0$-algebras..........................................................................................................40§ 13. Extended spectrum; theorem on entire functions and its applications to Q-algebras and radicals.............44§ 14. Elementary properties of entire functions and characterization of commutative $B_0$-algebras with and without entire functions..................................................................................................................................................51§ 15. Entire operations in $B_0$-spaces and their applications to entire functions.................................................56§ 16. Final remarks.................................................................................................................................................................65References...............................................................................................................................................................................68
LA - eng
KW - functional analysis
UR - http://eudml.org/doc/268341
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.