Metric generalizations of Banach algebras
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1965
Access Full Book
topAbstract
topHow to cite
topW. Żelazko. Metric generalizations of Banach algebras. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1965. <http://eudml.org/doc/268341>.
@book{W1965,
abstract = {CONTENTSPRELIMINARIES§ 0. Introduction.......................................................................................................................................................................3§ 1. Definitions and notation.................................................................................................................................................5Chapter ILOCALLY BOUNDED ALGEBRAS§ 2. Basic facts and examples..............................................................................................................................................6§ 3. Commutative p-normed algebras, spectral form and p-normed field..................................................................8§ 4. Commutative p-normed algebras (continued)..........................................................................................................12§ 5. Analytic functions in p-normed algebras.....................................................................................................................16§ 6. Final remarks...................................................................................................................................................................21Chapter IIF-ALGEBRAS AND TOPOLOGICAL ALGEBRAS§ 7. F-algebras.........................................................................................................................................................................23§ 8. Topological division algebras.......................................................................................................................................26Chapter III$B_0$-ALGEBRAS§ 9. Basic facts.........................................................................................................................................................................29§ 10. Multiplicatively convex B0-algebras.........................................................................................................................31§ 11. Spectra and power series in commutative m-convex $B_0$-algebras..............................................................34§ 12. Examples of non-m-convex $B_0$-algebras..........................................................................................................40§ 13. Extended spectrum; theorem on entire functions and its applications to Q-algebras and radicals.............44§ 14. Elementary properties of entire functions and characterization of commutative $B_0$-algebras with and without entire functions..................................................................................................................................................51§ 15. Entire operations in $B_0$-spaces and their applications to entire functions.................................................56§ 16. Final remarks.................................................................................................................................................................65References...............................................................................................................................................................................68},
author = {W. Żelazko},
keywords = {functional analysis},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Metric generalizations of Banach algebras},
url = {http://eudml.org/doc/268341},
year = {1965},
}
TY - BOOK
AU - W. Żelazko
TI - Metric generalizations of Banach algebras
PY - 1965
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSPRELIMINARIES§ 0. Introduction.......................................................................................................................................................................3§ 1. Definitions and notation.................................................................................................................................................5Chapter ILOCALLY BOUNDED ALGEBRAS§ 2. Basic facts and examples..............................................................................................................................................6§ 3. Commutative p-normed algebras, spectral form and p-normed field..................................................................8§ 4. Commutative p-normed algebras (continued)..........................................................................................................12§ 5. Analytic functions in p-normed algebras.....................................................................................................................16§ 6. Final remarks...................................................................................................................................................................21Chapter IIF-ALGEBRAS AND TOPOLOGICAL ALGEBRAS§ 7. F-algebras.........................................................................................................................................................................23§ 8. Topological division algebras.......................................................................................................................................26Chapter III$B_0$-ALGEBRAS§ 9. Basic facts.........................................................................................................................................................................29§ 10. Multiplicatively convex B0-algebras.........................................................................................................................31§ 11. Spectra and power series in commutative m-convex $B_0$-algebras..............................................................34§ 12. Examples of non-m-convex $B_0$-algebras..........................................................................................................40§ 13. Extended spectrum; theorem on entire functions and its applications to Q-algebras and radicals.............44§ 14. Elementary properties of entire functions and characterization of commutative $B_0$-algebras with and without entire functions..................................................................................................................................................51§ 15. Entire operations in $B_0$-spaces and their applications to entire functions.................................................56§ 16. Final remarks.................................................................................................................................................................65References...............................................................................................................................................................................68
LA - eng
KW - functional analysis
UR - http://eudml.org/doc/268341
ER -
Citations in EuDML Documents
top- Alberto Arosio, Locally convex inductive limits of normed algebras
- W. Żelazko, Concerning entire functions in -algebras
- Mohamed Akkar, Caractérisation des algèbres localement m-convexes dont l'ensemble des caractères est équiborné
- Hermann Render, Andreas Sauer, Algebras of holomorphic functions with Hadamard multiplication
- Hermann Render, Topological algebras with an orthogonal total sequence
- S. Rolewicz, On locally bounded algebras
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.