Metric generalizations of Banach algebras

W. Żelazko

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1965

Abstract

top
CONTENTSPRELIMINARIES§ 0. Introduction.......................................................................................................................................................................3§ 1. Definitions and notation.................................................................................................................................................5Chapter ILOCALLY BOUNDED ALGEBRAS§ 2. Basic facts and examples..............................................................................................................................................6§ 3. Commutative p-normed algebras, spectral form and p-normed field..................................................................8§ 4. Commutative p-normed algebras (continued)..........................................................................................................12§ 5. Analytic functions in p-normed algebras.....................................................................................................................16§ 6. Final remarks...................................................................................................................................................................21Chapter IIF-ALGEBRAS AND TOPOLOGICAL ALGEBRAS§ 7. F-algebras.........................................................................................................................................................................23§ 8. Topological division algebras.......................................................................................................................................26Chapter III-ALGEBRAS§ 9. Basic facts.........................................................................................................................................................................29§ 10. Multiplicatively convex B0-algebras.........................................................................................................................31§ 11. Spectra and power series in commutative m-convex -algebras..............................................................34§ 12. Examples of non-m-convex -algebras..........................................................................................................40§ 13. Extended spectrum; theorem on entire functions and its applications to Q-algebras and radicals.............44§ 14. Elementary properties of entire functions and characterization of commutative -algebras with and without entire functions..................................................................................................................................................51§ 15. Entire operations in -spaces and their applications to entire functions.................................................56§ 16. Final remarks.................................................................................................................................................................65References...............................................................................................................................................................................68

How to cite

top

W. Żelazko. Metric generalizations of Banach algebras. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1965. <http://eudml.org/doc/268341>.

@book{W1965,
abstract = {CONTENTSPRELIMINARIES§ 0. Introduction.......................................................................................................................................................................3§ 1. Definitions and notation.................................................................................................................................................5Chapter ILOCALLY BOUNDED ALGEBRAS§ 2. Basic facts and examples..............................................................................................................................................6§ 3. Commutative p-normed algebras, spectral form and p-normed field..................................................................8§ 4. Commutative p-normed algebras (continued)..........................................................................................................12§ 5. Analytic functions in p-normed algebras.....................................................................................................................16§ 6. Final remarks...................................................................................................................................................................21Chapter IIF-ALGEBRAS AND TOPOLOGICAL ALGEBRAS§ 7. F-algebras.........................................................................................................................................................................23§ 8. Topological division algebras.......................................................................................................................................26Chapter III$B_0$-ALGEBRAS§ 9. Basic facts.........................................................................................................................................................................29§ 10. Multiplicatively convex B0-algebras.........................................................................................................................31§ 11. Spectra and power series in commutative m-convex $B_0$-algebras..............................................................34§ 12. Examples of non-m-convex $B_0$-algebras..........................................................................................................40§ 13. Extended spectrum; theorem on entire functions and its applications to Q-algebras and radicals.............44§ 14. Elementary properties of entire functions and characterization of commutative $B_0$-algebras with and without entire functions..................................................................................................................................................51§ 15. Entire operations in $B_0$-spaces and their applications to entire functions.................................................56§ 16. Final remarks.................................................................................................................................................................65References...............................................................................................................................................................................68},
author = {W. Żelazko},
keywords = {functional analysis},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Metric generalizations of Banach algebras},
url = {http://eudml.org/doc/268341},
year = {1965},
}

TY - BOOK
AU - W. Żelazko
TI - Metric generalizations of Banach algebras
PY - 1965
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSPRELIMINARIES§ 0. Introduction.......................................................................................................................................................................3§ 1. Definitions and notation.................................................................................................................................................5Chapter ILOCALLY BOUNDED ALGEBRAS§ 2. Basic facts and examples..............................................................................................................................................6§ 3. Commutative p-normed algebras, spectral form and p-normed field..................................................................8§ 4. Commutative p-normed algebras (continued)..........................................................................................................12§ 5. Analytic functions in p-normed algebras.....................................................................................................................16§ 6. Final remarks...................................................................................................................................................................21Chapter IIF-ALGEBRAS AND TOPOLOGICAL ALGEBRAS§ 7. F-algebras.........................................................................................................................................................................23§ 8. Topological division algebras.......................................................................................................................................26Chapter III$B_0$-ALGEBRAS§ 9. Basic facts.........................................................................................................................................................................29§ 10. Multiplicatively convex B0-algebras.........................................................................................................................31§ 11. Spectra and power series in commutative m-convex $B_0$-algebras..............................................................34§ 12. Examples of non-m-convex $B_0$-algebras..........................................................................................................40§ 13. Extended spectrum; theorem on entire functions and its applications to Q-algebras and radicals.............44§ 14. Elementary properties of entire functions and characterization of commutative $B_0$-algebras with and without entire functions..................................................................................................................................................51§ 15. Entire operations in $B_0$-spaces and their applications to entire functions.................................................56§ 16. Final remarks.................................................................................................................................................................65References...............................................................................................................................................................................68
LA - eng
KW - functional analysis
UR - http://eudml.org/doc/268341
ER -

Citations in EuDML Documents

top
  1. Alberto Arosio, Locally convex inductive limits of normed algebras
  2. W. Żelazko, Concerning entire functions in -algebras
  3. Mohamed Akkar, Caractérisation des algèbres localement m-convexes dont l'ensemble des caractères est équiborné
  4. Hermann Render, Andreas Sauer, Algebras of holomorphic functions with Hadamard multiplication
  5. Hermann Render, Topological algebras with an orthogonal total sequence
  6. S. Rolewicz, On locally bounded algebras

NotesEmbed ?

top

You must be logged in to post comments.