Two-parameter Hardy-Littlewood inequalities
Studia Mathematica (1996)
- Volume: 118, Issue: 2, page 175-184
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topWeisz, Ferenc. "Two-parameter Hardy-Littlewood inequalities." Studia Mathematica 118.2 (1996): 175-184. <http://eudml.org/doc/216272>.
@article{Weisz1996,
abstract = {The inequality (*) $(∑_\{|n|=1\}^\{∞\} ∑_\{|m|=1\}^\{∞\} |nm|^\{p-2\} |f̂(n,m)|^p)^\{1/p\} ≤ C_p ∥ƒ∥_\{H_p\}$ (0 < p ≤ 2) is proved for two-parameter trigonometric-Fourier coefficients and for the two-dimensional classical Hardy space $H_p$ on the bidisc. The inequality (*) is extended to each p if the Fourier coefficients are monotone. For monotone coefficients and for every p, the supremum of the partial sums of the Fourier series is in $L_p$ whenever the left hand side of (*) is finite. From this it follows that under the same condition the two-dimensional trigonometric-Fourier series of an arbitrary function from $H_1$ converges a.e. and also in $L_1$ norm to that function.},
author = {Weisz, Ferenc},
journal = {Studia Mathematica},
keywords = {Hardy spaces; rectangle p-atom; atomic decomposition; Hardy-Littlewood inequalities; two-parameter trigonometric-Fourier coefficients; Hardy space; bidisc},
language = {eng},
number = {2},
pages = {175-184},
title = {Two-parameter Hardy-Littlewood inequalities},
url = {http://eudml.org/doc/216272},
volume = {118},
year = {1996},
}
TY - JOUR
AU - Weisz, Ferenc
TI - Two-parameter Hardy-Littlewood inequalities
JO - Studia Mathematica
PY - 1996
VL - 118
IS - 2
SP - 175
EP - 184
AB - The inequality (*) $(∑_{|n|=1}^{∞} ∑_{|m|=1}^{∞} |nm|^{p-2} |f̂(n,m)|^p)^{1/p} ≤ C_p ∥ƒ∥_{H_p}$ (0 < p ≤ 2) is proved for two-parameter trigonometric-Fourier coefficients and for the two-dimensional classical Hardy space $H_p$ on the bidisc. The inequality (*) is extended to each p if the Fourier coefficients are monotone. For monotone coefficients and for every p, the supremum of the partial sums of the Fourier series is in $L_p$ whenever the left hand side of (*) is finite. From this it follows that under the same condition the two-dimensional trigonometric-Fourier series of an arbitrary function from $H_1$ converges a.e. and also in $L_1$ norm to that function.
LA - eng
KW - Hardy spaces; rectangle p-atom; atomic decomposition; Hardy-Littlewood inequalities; two-parameter trigonometric-Fourier coefficients; Hardy space; bidisc
UR - http://eudml.org/doc/216272
ER -
References
top- [1] S. -Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and -theory on product domains, Bull. Amer. Math. Soc. 12 (1985), 1-43. Zbl0557.42007
- [2] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. Zbl0358.30023
- [3] M. I. D'jachenko [M. I. D'yachenko], Multiple trigonometric series with lexicographically monotone coefficients, Anal. Math. 16 (1990), 173-190.
- [4] M. I. D'jachenko [M. I. D'yachenko], On the convergence of double trigonometric series and Fourier series with monotone coefficients, Math. USSR-Sb. 57 (1987), 57-75.
- [5] R. E. Edwards, Fourier Series. A Modern Introduction, Vol. 2, Springer, Berlin, 1982.
- [6] C. Fefferman and E. M. Stein, spaces of several variables, Acta Math. 129 (1972), 137-194. Zbl0257.46078
- [7] C. Fefferman and E. M. Stein, Calderón-Zygmund theory for product domains: spaces, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 840-843. Zbl0602.42023
- [8] R. F. Gundy, Inégalités pour martingales à un et deux indices: L’espace , in: Ecole d’Eté de Probabilités de Saint-Flour VIII-1978, Lecture Notes in Math. 774, Springer, Berlin, 1980, 251-331.
- [9] R. F. Gundy, Maximal function characterization of for the bidisc, in: Lecture Notes in Math. 781, Springer, Berlin, 1982, 51-58.
- [10] R. F. Gundy and E. M. Stein, theory for the poly-disc, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), 1026-1029. Zbl0405.32002
- [11] G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, J. London Math. Soc. 6 (1931), 3-9. Zbl0001.13504
- [12] B. Jawerth and A. Torchinsky, A note on real interpolation of Hardy spaces in the polydisk, Proc. Amer. Math. Soc. 96 (1986), 227-232. Zbl0606.42017
- [13] K.-C. Lin, Interpolation between Hardy spaces on the bidisc, Studia Math. 84 (1986), 89-96. Zbl0626.46060
- [14] F. Móricz, On double cosine, sine and Walsh series with monotone coefficients, Proc. Amer. Math. Soc. 109 (1990), 417-425. Zbl0741.42010
- [15] F. Móricz, On the maximum of the rectangular partial sums of double trigonometric series with non-negative coefficients, Anal. Math. 15 (1989), 283-290. Zbl0756.42010
- [16] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986. Zbl0621.42001
- [17] F. Weisz, Inequalities relative to two-parameter Vilenkin-Fourier coefficients, Studia Math. 99 (1991), 221-233. Zbl0728.60046
- [18] F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994. Zbl0796.60049
- [19] F. Weisz, Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series, Studia Math. 117 (1996), 173-194. Zbl0839.42009
- [20] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959. Zbl0085.05601
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.