Two-parameter Hardy-Littlewood inequalities

Ferenc Weisz

Studia Mathematica (1996)

  • Volume: 118, Issue: 2, page 175-184
  • ISSN: 0039-3223

Abstract

top
The inequality (*) ( | n | = 1 | m | = 1 | n m | p - 2 | f ̂ ( n , m ) | p ) 1 / p C p ƒ H p (0 < p ≤ 2) is proved for two-parameter trigonometric-Fourier coefficients and for the two-dimensional classical Hardy space H p on the bidisc. The inequality (*) is extended to each p if the Fourier coefficients are monotone. For monotone coefficients and for every p, the supremum of the partial sums of the Fourier series is in L p whenever the left hand side of (*) is finite. From this it follows that under the same condition the two-dimensional trigonometric-Fourier series of an arbitrary function from H 1 converges a.e. and also in L 1 norm to that function.

How to cite

top

Weisz, Ferenc. "Two-parameter Hardy-Littlewood inequalities." Studia Mathematica 118.2 (1996): 175-184. <http://eudml.org/doc/216272>.

@article{Weisz1996,
abstract = {The inequality (*) $(∑_\{|n|=1\}^\{∞\} ∑_\{|m|=1\}^\{∞\} |nm|^\{p-2\} |f̂(n,m)|^p)^\{1/p\} ≤ C_p ∥ƒ∥_\{H_p\}$ (0 < p ≤ 2) is proved for two-parameter trigonometric-Fourier coefficients and for the two-dimensional classical Hardy space $H_p$ on the bidisc. The inequality (*) is extended to each p if the Fourier coefficients are monotone. For monotone coefficients and for every p, the supremum of the partial sums of the Fourier series is in $L_p$ whenever the left hand side of (*) is finite. From this it follows that under the same condition the two-dimensional trigonometric-Fourier series of an arbitrary function from $H_1$ converges a.e. and also in $L_1$ norm to that function.},
author = {Weisz, Ferenc},
journal = {Studia Mathematica},
keywords = {Hardy spaces; rectangle p-atom; atomic decomposition; Hardy-Littlewood inequalities; two-parameter trigonometric-Fourier coefficients; Hardy space; bidisc},
language = {eng},
number = {2},
pages = {175-184},
title = {Two-parameter Hardy-Littlewood inequalities},
url = {http://eudml.org/doc/216272},
volume = {118},
year = {1996},
}

TY - JOUR
AU - Weisz, Ferenc
TI - Two-parameter Hardy-Littlewood inequalities
JO - Studia Mathematica
PY - 1996
VL - 118
IS - 2
SP - 175
EP - 184
AB - The inequality (*) $(∑_{|n|=1}^{∞} ∑_{|m|=1}^{∞} |nm|^{p-2} |f̂(n,m)|^p)^{1/p} ≤ C_p ∥ƒ∥_{H_p}$ (0 < p ≤ 2) is proved for two-parameter trigonometric-Fourier coefficients and for the two-dimensional classical Hardy space $H_p$ on the bidisc. The inequality (*) is extended to each p if the Fourier coefficients are monotone. For monotone coefficients and for every p, the supremum of the partial sums of the Fourier series is in $L_p$ whenever the left hand side of (*) is finite. From this it follows that under the same condition the two-dimensional trigonometric-Fourier series of an arbitrary function from $H_1$ converges a.e. and also in $L_1$ norm to that function.
LA - eng
KW - Hardy spaces; rectangle p-atom; atomic decomposition; Hardy-Littlewood inequalities; two-parameter trigonometric-Fourier coefficients; Hardy space; bidisc
UR - http://eudml.org/doc/216272
ER -

References

top
  1. [1] S. -Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and H p -theory on product domains, Bull. Amer. Math. Soc. 12 (1985), 1-43. Zbl0557.42007
  2. [2] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. Zbl0358.30023
  3. [3] M. I. D'jachenko [M. I. D'yachenko], Multiple trigonometric series with lexicographically monotone coefficients, Anal. Math. 16 (1990), 173-190. 
  4. [4] M. I. D'jachenko [M. I. D'yachenko], On the convergence of double trigonometric series and Fourier series with monotone coefficients, Math. USSR-Sb. 57 (1987), 57-75. 
  5. [5] R. E. Edwards, Fourier Series. A Modern Introduction, Vol. 2, Springer, Berlin, 1982. 
  6. [6] C. Fefferman and E. M. Stein, H p spaces of several variables, Acta Math. 129 (1972), 137-194. Zbl0257.46078
  7. [7] C. Fefferman and E. M. Stein, Calderón-Zygmund theory for product domains: H p spaces, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 840-843. Zbl0602.42023
  8. [8] R. F. Gundy, Inégalités pour martingales à un et deux indices: L’espace H p , in: Ecole d’Eté de Probabilités de Saint-Flour VIII-1978, Lecture Notes in Math. 774, Springer, Berlin, 1980, 251-331. 
  9. [9] R. F. Gundy, Maximal function characterization of H p for the bidisc, in: Lecture Notes in Math. 781, Springer, Berlin, 1982, 51-58. 
  10. [10] R. F. Gundy and E. M. Stein, H p theory for the poly-disc, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), 1026-1029. Zbl0405.32002
  11. [11] G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, J. London Math. Soc. 6 (1931), 3-9. Zbl0001.13504
  12. [12] B. Jawerth and A. Torchinsky, A note on real interpolation of Hardy spaces in the polydisk, Proc. Amer. Math. Soc. 96 (1986), 227-232. Zbl0606.42017
  13. [13] K.-C. Lin, Interpolation between Hardy spaces on the bidisc, Studia Math. 84 (1986), 89-96. Zbl0626.46060
  14. [14] F. Móricz, On double cosine, sine and Walsh series with monotone coefficients, Proc. Amer. Math. Soc. 109 (1990), 417-425. Zbl0741.42010
  15. [15] F. Móricz, On the maximum of the rectangular partial sums of double trigonometric series with non-negative coefficients, Anal. Math. 15 (1989), 283-290. Zbl0756.42010
  16. [16] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986. Zbl0621.42001
  17. [17] F. Weisz, Inequalities relative to two-parameter Vilenkin-Fourier coefficients, Studia Math. 99 (1991), 221-233. Zbl0728.60046
  18. [18] F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994. Zbl0796.60049
  19. [19] F. Weisz, Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series, Studia Math. 117 (1996), 173-194. Zbl0839.42009
  20. [20] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959. Zbl0085.05601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.