Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series

Ferenc Weisz

Studia Mathematica (1996)

  • Volume: 117, Issue: 2, page 173-194
  • ISSN: 0039-3223

Abstract

top
The martingale Hardy space H p ( [ 0 , 1 ) 2 ) and the classical Hardy space H p ( 2 ) are introduced. We prove that certain means of the partial sums of the two-parameter Walsh-Fourier and trigonometric-Fourier series are uniformly bounded operators from H p to L p (0 < p ≤ 1). As a consequence we obtain strong convergence theorems for the partial sums. The classical Hardy-Littlewood inequality is extended to two-parameter Walsh-Fourier and trigonometric-Fourier coefficients. The dual inequalities are also verified and a Marcinkiewicz-Zygmund type inequality is obtained for BMO spaces.

How to cite

top

Weisz, Ferenc. "Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series." Studia Mathematica 117.2 (1996): 173-194. <http://eudml.org/doc/216250>.

@article{Weisz1996,
abstract = {The martingale Hardy space $H_p([0,1)^2)$ and the classical Hardy space $H_p(^2)$ are introduced. We prove that certain means of the partial sums of the two-parameter Walsh-Fourier and trigonometric-Fourier series are uniformly bounded operators from $H_p$ to $L_p$ (0 < p ≤ 1). As a consequence we obtain strong convergence theorems for the partial sums. The classical Hardy-Littlewood inequality is extended to two-parameter Walsh-Fourier and trigonometric-Fourier coefficients. The dual inequalities are also verified and a Marcinkiewicz-Zygmund type inequality is obtained for BMO spaces.},
author = {Weisz, Ferenc},
journal = {Studia Mathematica},
keywords = {martingale and classical Hardy spaces; p-atom; atomic decomposition; Walsh functions; Hardy-Littlewood inequality; Walsh-Fourier series; trigonometric-Fourier series; martingale Hardy space; classical Hardy space; strong convergence; Marcinkiewicz-Zygmund type inequality; BMO spaces},
language = {eng},
number = {2},
pages = {173-194},
title = {Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series},
url = {http://eudml.org/doc/216250},
volume = {117},
year = {1996},
}

TY - JOUR
AU - Weisz, Ferenc
TI - Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series
JO - Studia Mathematica
PY - 1996
VL - 117
IS - 2
SP - 173
EP - 194
AB - The martingale Hardy space $H_p([0,1)^2)$ and the classical Hardy space $H_p(^2)$ are introduced. We prove that certain means of the partial sums of the two-parameter Walsh-Fourier and trigonometric-Fourier series are uniformly bounded operators from $H_p$ to $L_p$ (0 < p ≤ 1). As a consequence we obtain strong convergence theorems for the partial sums. The classical Hardy-Littlewood inequality is extended to two-parameter Walsh-Fourier and trigonometric-Fourier coefficients. The dual inequalities are also verified and a Marcinkiewicz-Zygmund type inequality is obtained for BMO spaces.
LA - eng
KW - martingale and classical Hardy spaces; p-atom; atomic decomposition; Walsh functions; Hardy-Littlewood inequality; Walsh-Fourier series; trigonometric-Fourier series; martingale Hardy space; classical Hardy space; strong convergence; Marcinkiewicz-Zygmund type inequality; BMO spaces
UR - http://eudml.org/doc/216250
ER -

References

top
  1. [1] D. L. Burkholder, R. F. Gundy and M. L. Silverstein, A maximal function characterization of the class H p , Trans. Amer. Math. Soc. 157 (1971), 137-153. Zbl0223.30048
  2. [2] R. R. Coifman, A real variable characterization of H p , Studia Math. 51 (1974), 269-274. Zbl0289.46037
  3. [3] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. Zbl0358.30023
  4. [4] R. E. Edwards, Fourier Series, A Modern Introduction, Vol. 1, Springer, Berlin, 1982. Zbl0599.42001
  5. [5] R. E. Edwards, Fourier Series, A Modern Introduction, Vol. 2, Springer, Berlin, 1982. Zbl0599.42001
  6. [6] C. Fefferman, N. M. Rivière, and Y. Sagher, Interpolation between H p spaces: the real method, Trans. Amer. Math. Soc. 191, (1974), 75-81. Zbl0285.41006
  7. [7] C. Fefferman and E. M. Stein, H p spaces of several variables, Acta Math. 129 (1972), 137-194. Zbl0257.46078
  8. [8] N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414. Zbl0036.03604
  9. [9] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, Math. Stud. 116, North-Holland, Amsterdam, 1985. 
  10. [10] A. M. Garsia, Martingale Inequalities, Seminar Notes on Recent Progress, Math. Lecture Notes Ser., Benjamin, New York, 1973. 
  11. [11] G. Gát, Investigations of certain operators with respect to the Vilenkin system, Acta Math. Hungar. 61 (1993), 131-149. Zbl0805.42019
  12. [12] G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, J. London Math. Soc. 6 (1931), 3-9. Zbl0001.13504
  13. [13] N. R. Ladhawala, Absolute summability of Walsh-Fourier series, Pacific J. Math. 65 (1976), 103-108. Zbl0318.42023
  14. [14] R. H. Latter, A characterization of H p ( R n ) in terms of atoms, Studia Math. 62 (1978), 92-101. Zbl0398.42017
  15. [15] J. Neveu, Discrete-Parameter Martingales, North-Holland, 1971. 
  16. [16] F. Schipp, W. R. Wade, P. Simon and J. Pál, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990. Zbl0727.42017
  17. [17] P. Simon, Strong convergence of certain means with respect to the Walsh-Fourier series, Acta Math. Hungar. 49 (1987), 425-431. Zbl0643.42020
  18. [18] W. T. Sledd and D. A. Stegenga, An H 1 multiplier theorem, Ark. Mat. 19 (1981), 265-270. 
  19. [19] B. Smith, A strong convergence theorem for H 1 ( ) , in: Lecture Notes in Math. 995, Springer, Berlin, 1994, 169-173. 
  20. [20] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. Zbl0207.13501
  21. [21] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971. Zbl0232.42007
  22. [22] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986. Zbl0621.42001
  23. [23] F. Weisz, Cesàro summability of two-dimensional Walsh-Fourier series, Trans. Amer. Math. Soc., to appear. Zbl0866.42020
  24. [24] F. Weisz, Inequalities relative to two-parameter Vilenkin-Fourier coefficients, Studia Math. 99 (1991), 221-233. Zbl0728.60046
  25. [25] F. Weisz, Martingale Hardy Spaces and their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994. Zbl0796.60049
  26. [26] F. Weisz, Martingale Hardy spaces for 0 < p ≤ 1, Probab. Theory Related Fields 84 (1990), 361-376. Zbl0687.60046
  27. [27] F. Weisz, Strong summability of two-dimensional Walsh-Fourier series, Acta Sci. Math. (Szeged) 60 (1995), 779-803. Zbl0836.42016
  28. [28] J. M. Wilson, A simple proof of the atomic decomposition for H p ( R n ) , 0 < p ≤ 1, Studia Math. 74 (1982), 25-33. Zbl0496.42009
  29. [29] J. M. Wilson, On the atomic decomposition for Hardy spaces, Pacific J. Math. 116 (1985), 201-207. Zbl0563.42012
  30. [30] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959. Zbl0085.05601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.