Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series
Studia Mathematica (1996)
- Volume: 117, Issue: 2, page 173-194
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topWeisz, Ferenc. "Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series." Studia Mathematica 117.2 (1996): 173-194. <http://eudml.org/doc/216250>.
@article{Weisz1996,
abstract = {The martingale Hardy space $H_p([0,1)^2)$ and the classical Hardy space $H_p(^2)$ are introduced. We prove that certain means of the partial sums of the two-parameter Walsh-Fourier and trigonometric-Fourier series are uniformly bounded operators from $H_p$ to $L_p$ (0 < p ≤ 1). As a consequence we obtain strong convergence theorems for the partial sums. The classical Hardy-Littlewood inequality is extended to two-parameter Walsh-Fourier and trigonometric-Fourier coefficients. The dual inequalities are also verified and a Marcinkiewicz-Zygmund type inequality is obtained for BMO spaces.},
author = {Weisz, Ferenc},
journal = {Studia Mathematica},
keywords = {martingale and classical Hardy spaces; p-atom; atomic decomposition; Walsh functions; Hardy-Littlewood inequality; Walsh-Fourier series; trigonometric-Fourier series; martingale Hardy space; classical Hardy space; strong convergence; Marcinkiewicz-Zygmund type inequality; BMO spaces},
language = {eng},
number = {2},
pages = {173-194},
title = {Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series},
url = {http://eudml.org/doc/216250},
volume = {117},
year = {1996},
}
TY - JOUR
AU - Weisz, Ferenc
TI - Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series
JO - Studia Mathematica
PY - 1996
VL - 117
IS - 2
SP - 173
EP - 194
AB - The martingale Hardy space $H_p([0,1)^2)$ and the classical Hardy space $H_p(^2)$ are introduced. We prove that certain means of the partial sums of the two-parameter Walsh-Fourier and trigonometric-Fourier series are uniformly bounded operators from $H_p$ to $L_p$ (0 < p ≤ 1). As a consequence we obtain strong convergence theorems for the partial sums. The classical Hardy-Littlewood inequality is extended to two-parameter Walsh-Fourier and trigonometric-Fourier coefficients. The dual inequalities are also verified and a Marcinkiewicz-Zygmund type inequality is obtained for BMO spaces.
LA - eng
KW - martingale and classical Hardy spaces; p-atom; atomic decomposition; Walsh functions; Hardy-Littlewood inequality; Walsh-Fourier series; trigonometric-Fourier series; martingale Hardy space; classical Hardy space; strong convergence; Marcinkiewicz-Zygmund type inequality; BMO spaces
UR - http://eudml.org/doc/216250
ER -
References
top- [1] D. L. Burkholder, R. F. Gundy and M. L. Silverstein, A maximal function characterization of the class , Trans. Amer. Math. Soc. 157 (1971), 137-153. Zbl0223.30048
- [2] R. R. Coifman, A real variable characterization of , Studia Math. 51 (1974), 269-274. Zbl0289.46037
- [3] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. Zbl0358.30023
- [4] R. E. Edwards, Fourier Series, A Modern Introduction, Vol. 1, Springer, Berlin, 1982. Zbl0599.42001
- [5] R. E. Edwards, Fourier Series, A Modern Introduction, Vol. 2, Springer, Berlin, 1982. Zbl0599.42001
- [6] C. Fefferman, N. M. Rivière, and Y. Sagher, Interpolation between spaces: the real method, Trans. Amer. Math. Soc. 191, (1974), 75-81. Zbl0285.41006
- [7] C. Fefferman and E. M. Stein, spaces of several variables, Acta Math. 129 (1972), 137-194. Zbl0257.46078
- [8] N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414. Zbl0036.03604
- [9] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, Math. Stud. 116, North-Holland, Amsterdam, 1985.
- [10] A. M. Garsia, Martingale Inequalities, Seminar Notes on Recent Progress, Math. Lecture Notes Ser., Benjamin, New York, 1973.
- [11] G. Gát, Investigations of certain operators with respect to the Vilenkin system, Acta Math. Hungar. 61 (1993), 131-149. Zbl0805.42019
- [12] G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, J. London Math. Soc. 6 (1931), 3-9. Zbl0001.13504
- [13] N. R. Ladhawala, Absolute summability of Walsh-Fourier series, Pacific J. Math. 65 (1976), 103-108. Zbl0318.42023
- [14] R. H. Latter, A characterization of in terms of atoms, Studia Math. 62 (1978), 92-101. Zbl0398.42017
- [15] J. Neveu, Discrete-Parameter Martingales, North-Holland, 1971.
- [16] F. Schipp, W. R. Wade, P. Simon and J. Pál, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990. Zbl0727.42017
- [17] P. Simon, Strong convergence of certain means with respect to the Walsh-Fourier series, Acta Math. Hungar. 49 (1987), 425-431. Zbl0643.42020
- [18] W. T. Sledd and D. A. Stegenga, An multiplier theorem, Ark. Mat. 19 (1981), 265-270.
- [19] B. Smith, A strong convergence theorem for , in: Lecture Notes in Math. 995, Springer, Berlin, 1994, 169-173.
- [20] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. Zbl0207.13501
- [21] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971. Zbl0232.42007
- [22] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986. Zbl0621.42001
- [23] F. Weisz, Cesàro summability of two-dimensional Walsh-Fourier series, Trans. Amer. Math. Soc., to appear. Zbl0866.42020
- [24] F. Weisz, Inequalities relative to two-parameter Vilenkin-Fourier coefficients, Studia Math. 99 (1991), 221-233. Zbl0728.60046
- [25] F. Weisz, Martingale Hardy Spaces and their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994. Zbl0796.60049
- [26] F. Weisz, Martingale Hardy spaces for 0 < p ≤ 1, Probab. Theory Related Fields 84 (1990), 361-376. Zbl0687.60046
- [27] F. Weisz, Strong summability of two-dimensional Walsh-Fourier series, Acta Sci. Math. (Szeged) 60 (1995), 779-803. Zbl0836.42016
- [28] J. M. Wilson, A simple proof of the atomic decomposition for , 0 < p ≤ 1, Studia Math. 74 (1982), 25-33. Zbl0496.42009
- [29] J. M. Wilson, On the atomic decomposition for Hardy spaces, Pacific J. Math. 116 (1985), 201-207. Zbl0563.42012
- [30] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959. Zbl0085.05601
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.