Hardy type inequalities for two-parameter Vilenkin-Fourier coefficients
Studia Mathematica (1997)
- Volume: 125, Issue: 3, page 231-246
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topSimon, Péter, and Weisz, Ferenc. "Hardy type inequalities for two-parameter Vilenkin-Fourier coefficients." Studia Mathematica 125.3 (1997): 231-246. <http://eudml.org/doc/216435>.
@article{Simon1997,
abstract = {Our main result is a Hardy type inequality with respect to the two-parameter Vilenkin system (*) $(∑_\{k=1\}^∞ ∑_\{j=1\}^∞ |f̂(k,j)|^\{p\}(kj)^\{p-2\})^\{1/p\} ≤ C_p∥f∥_\{H^p_\{**\}\}$ (1/2 < p≤2) where f belongs to the Hardy space $H_\{**\}^p (G_m × G_s)$ defined by means of a maximal function. This inequality is extended to p > 2 if the Vilenkin-Fourier coefficients of f form a monotone sequence. We show that the converse of (*) also holds for all p > 0 under the monotonicity assumption.},
author = {Simon, Péter, Weisz, Ferenc},
journal = {Studia Mathematica},
keywords = {two-parameter martingales and Hardy spaces; rectangle p-atoms; Vilenkin functions; Hardy-Littlewood inequality; Hardy spaces; double Vilenkin-Fourier series; multiplicative Vilenkin groups; Hardy-Littlewood type inequality; Vilenkin systems},
language = {eng},
number = {3},
pages = {231-246},
title = {Hardy type inequalities for two-parameter Vilenkin-Fourier coefficients},
url = {http://eudml.org/doc/216435},
volume = {125},
year = {1997},
}
TY - JOUR
AU - Simon, Péter
AU - Weisz, Ferenc
TI - Hardy type inequalities for two-parameter Vilenkin-Fourier coefficients
JO - Studia Mathematica
PY - 1997
VL - 125
IS - 3
SP - 231
EP - 246
AB - Our main result is a Hardy type inequality with respect to the two-parameter Vilenkin system (*) $(∑_{k=1}^∞ ∑_{j=1}^∞ |f̂(k,j)|^{p}(kj)^{p-2})^{1/p} ≤ C_p∥f∥_{H^p_{**}}$ (1/2 < p≤2) where f belongs to the Hardy space $H_{**}^p (G_m × G_s)$ defined by means of a maximal function. This inequality is extended to p > 2 if the Vilenkin-Fourier coefficients of f form a monotone sequence. We show that the converse of (*) also holds for all p > 0 under the monotonicity assumption.
LA - eng
KW - two-parameter martingales and Hardy spaces; rectangle p-atoms; Vilenkin functions; Hardy-Littlewood inequality; Hardy spaces; double Vilenkin-Fourier series; multiplicative Vilenkin groups; Hardy-Littlewood type inequality; Vilenkin systems
UR - http://eudml.org/doc/216435
ER -
References
top- [1] J. Brossard, Comparaison des “normes” du processus croissant et de la variable maximale pour les martingales régulières à deux indices. Théorème local correspondant, Ann. Probab. 8 (1980), 1183-1188. Zbl0454.60047
- [2] J. Brossard, Régularité des martingales à deux indices et inégalités de normes, in: Processus Aléatoires à Deux Indices, Lecture Notes in Math. 863, Springer, Berlin, 1981, 91-121. Zbl0473.60045
- [3] D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probab. 1 (1973), 19-42. Zbl0301.60035
- [4] R. Cairoli, Une inégalité pour martingales à indices multiples et ses applications, in: Séminaire de Probabilités V, Lecture Notes in Math. 124, Springer, Berlin, (1970), 1-27. Zbl0218.60045
- [5] J. A. Chao, Hardy spaces on regular martingales, in: Martingale Theory in Harmonic Analysis and Banach Spaces, Lecture Notes in Math. 939, Springer, Berlin, 1982, 18-28.
- [6] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. Zbl0358.30023
- [7] S. Fridli and P. Simon, On the Dirichlet kernels and a Hardy space with respect to the Vilenkin system, Acta Math. Hungar. 45 (1985), 223-234. Zbl0577.42021
- [8] A. M. Garsia, Martingale Inequalities. Seminar Notes on Recent Progress, Math. Lecture Notes Series, Benjamin, New York, 1973.
- [9] G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, J. London Math. Soc. 6 (1931), 3-9. Zbl0001.13504
- [10] N. R. Ladhawala, Absolute summability of Walsh-Fourier series, Pacific J. Math. 65 (1976), 103-108. Zbl0318.42023
- [11] C. Métraux, Quelques inégalités pour martingales à paramètre bidimensionnel, in: Séminaire de Probabilités XII, Lecture Notes in Math. 649, Springer, Berlin, 1978, 170-179. Zbl0381.60042
- [12] F. Móricz, On double cosine, sine and Walsh series with monotone coefficients, Proc. Amer. Math. Soc. 109 (1990), 417-425. Zbl0741.42010
- [13] F. Móricz, On Walsh series with coefficients tending monotonically to zero, Acta Math. Acad. Sci. Hungar. 38 (1981), 183-189. Zbl0479.42020
- [14] F. Schipp, W. R. Wade, P. Simon and J. Pál, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990. Zbl0727.42017
- [15] P. Simon, Investigations with respect to the Vilenkin system, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 28 (1985), 87-101. Zbl0586.43001
- [16] P. Simon and F. Weisz, Hardy-Littlewood type inequalities for Vilenkin-Fourier coefficients, Anal. Math., to appear. Zbl0913.42020
- [17] N. Y. Vilenkin, On a class of complete orthonormal systems, Izv. Akad. Nauk SSSR Ser. Mat. 11 (1947), 363-400 (in Russian); English transl.: Amer. Math. Soc. Transl. 28 (1963), 1-35.
- [18] F. Weisz, Hardy spaces and Cesàro means of two-dimensional Fourier series, in: Approximation Theory and Function Series (Budapest, 1995), Bolyai Soc. Math. Stud. 5, Budapest, 1996, 353-367. Zbl0866.42019
- [19] F. Weisz, Inequalities relative to two-parameter Vilenkin-Fourier coefficients, Studia Math. 99 (1991), 221-233. Zbl0728.60046
- [20] F. Weisz, Martingale Hardy Spaces and their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994. Zbl0796.60049
- [21] F. Weisz, Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series, Studia Math. 117 (1996), 173-194. Zbl0839.42009
- [22] F. Weisz, Two-parameter Hardy-Littlewood inequalities, ibid. 118 (1996), 175-184. Zbl0864.42003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.