Tail and moment estimates for chaoses generated by symmetric random variables with logarithmically concave tails
Radosław Adamczak; Rafał Latała
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 4, page 1103-1136
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topAdamczak, Radosław, and Latała, Rafał. "Tail and moment estimates for chaoses generated by symmetric random variables with logarithmically concave tails." Annales de l'I.H.P. Probabilités et statistiques 48.4 (2012): 1103-1136. <http://eudml.org/doc/272075>.
@article{Adamczak2012,
abstract = {We present two-sided estimates of moments and tails of polynomial chaoses of order at most three generated by independent symmetric random variables with log-concave tails as well as for chaoses of arbitrary order generated by independent symmetric exponential variables. The estimates involve only deterministic quantities and are optimal up to constants depending only on the order of the chaos variable.},
author = {Adamczak, Radosław, Latała, Rafał},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {polynomial chaoses; tail and moment estimates; metric entropy},
language = {eng},
number = {4},
pages = {1103-1136},
publisher = {Gauthier-Villars},
title = {Tail and moment estimates for chaoses generated by symmetric random variables with logarithmically concave tails},
url = {http://eudml.org/doc/272075},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Adamczak, Radosław
AU - Latała, Rafał
TI - Tail and moment estimates for chaoses generated by symmetric random variables with logarithmically concave tails
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 4
SP - 1103
EP - 1136
AB - We present two-sided estimates of moments and tails of polynomial chaoses of order at most three generated by independent symmetric random variables with log-concave tails as well as for chaoses of arbitrary order generated by independent symmetric exponential variables. The estimates involve only deterministic quantities and are optimal up to constants depending only on the order of the chaos variable.
LA - eng
KW - polynomial chaoses; tail and moment estimates; metric entropy
UR - http://eudml.org/doc/272075
ER -
References
top- [1] R. Adamczak. Logarithmic Sobolev inequalities and concentration of measure for convex functions and polynomial chaoses. Bull. Pol. Acad. Sci. Math.53 (2005) 221–238. Zbl1105.60016MR2163396
- [2] R. Adamczak. Moment inequalities for -statistics. Ann. Probab.34 (2006) 2288–2314. Zbl1123.60009MR2294982
- [3] M. A. Arcones and E. Giné. On decoupling, series expansions, and tail behavior of chaos processes, J. Theoret. Probab.6 (1993) 101–122. Zbl0785.60023MR1201060
- [4] A. Bonami. Étude des coefficients de Fourier des fonctions de . Ann. Inst. Fourier (Grenoble) 20 (1970) 335–402. Zbl0195.42501MR283496
- [5] C. Borell. On the Taylor series of a Wiener polynomial. In Seminar Notes on Multiple Stochastic Integration, Polynomial Chaos and Their Integration. Case Western Reserve Univ., Cleveland, 1984.
- [6] V. H. de la Peña. Decoupling and Khintchine’s inequalities for -statistics. Ann. Probab.20 (1992) 1877–1892. Zbl0761.60014MR1188046
- [7] V. H. de la Peña and E. Giné. Decoupling: From Dependence to Independence. Springer, New York, 1999. Zbl0918.60021MR1666908
- [8] V. H. de la Peña and S. J. Montgomery-Smith. Decoupling inequalities for the tail probabilities of multivariate -statistics. Ann. Probab.23 (1995) 806–816. Zbl0827.60014MR1334173
- [9] R. M. Dudley. The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Funct. Anal.1 (1967) 290–330. Zbl0188.20502MR220340
- [10] E. D. Gluskin and S. Kwapień. Tail and moment estimates for sums of independent random variables with logarithmically concave tails. Studia Math.114 (1995) 303–309. Zbl0834.60050MR1338834
- [11] L. Gross. Logarithmic Sobolev inequalities. Amer. J. Math.97 (1975) 1061–1083. Zbl0318.46049MR420249
- [12] S. Kwapień. Decoupling inequalities for polynomial chaos. Ann. Probab. 15 (3) (1987) 1062–1071. Zbl0622.60026MR893914
- [13] R. Latała. Tail and moment estimates for sums of independent random vectors with logarithmically concave tails. Studia Math.118 (1996) 301–304. Zbl0847.60031MR1388035
- [14] R. Latała. Tail and moment estimates for some types of chaos. Studia Math.135 (1999) 39–53. Zbl0935.60009MR1686370
- [15] R. Latała. Estimates of moments and tails of Gaussian chaoses. Ann. Probab.34 (2006) 2315–2331. Zbl1119.60015MR2294983
- [16] R. Latała and R. Łochowski. Moment and tail estimates for multidimensional chaos generated by positive random variables with logarithmically concave tails. In Stochastic Inequalities and Applications 77–92. Progr. Probab. 56. Birkhäuser, Basel, 2003. Zbl1037.60016MR2073428
- [17] M. Ledoux and M. Talagrand. Probability in Banach Spaces: Isoperimetry and Processes. Ergeb. Math. Grenzgeb. 23. Springer, Berlin, 1991. Zbl0748.60004MR1102015
- [18] R. Łochowski. Moment and tail estimates for multidimensional chaoses generated by symmetric random variables with logarithmically concave tails. In Approximation and Probability 161–176. Banach Center Publ. 72. Polish Acad. Sci., Warsaw, 2006. Zbl1105.60018MR2325744
- [19] E. Nelson. The free Markoff field. J. Funct. Anal.12 (1973) 211–227. Zbl0273.60079MR343816
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.