Tail and moment estimates for chaoses generated by symmetric random variables with logarithmically concave tails

Radosław Adamczak; Rafał Latała

Annales de l'I.H.P. Probabilités et statistiques (2012)

  • Volume: 48, Issue: 4, page 1103-1136
  • ISSN: 0246-0203

Abstract

top
We present two-sided estimates of moments and tails of polynomial chaoses of order at most three generated by independent symmetric random variables with log-concave tails as well as for chaoses of arbitrary order generated by independent symmetric exponential variables. The estimates involve only deterministic quantities and are optimal up to constants depending only on the order of the chaos variable.

How to cite

top

Adamczak, Radosław, and Latała, Rafał. "Tail and moment estimates for chaoses generated by symmetric random variables with logarithmically concave tails." Annales de l'I.H.P. Probabilités et statistiques 48.4 (2012): 1103-1136. <http://eudml.org/doc/272075>.

@article{Adamczak2012,
abstract = {We present two-sided estimates of moments and tails of polynomial chaoses of order at most three generated by independent symmetric random variables with log-concave tails as well as for chaoses of arbitrary order generated by independent symmetric exponential variables. The estimates involve only deterministic quantities and are optimal up to constants depending only on the order of the chaos variable.},
author = {Adamczak, Radosław, Latała, Rafał},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {polynomial chaoses; tail and moment estimates; metric entropy},
language = {eng},
number = {4},
pages = {1103-1136},
publisher = {Gauthier-Villars},
title = {Tail and moment estimates for chaoses generated by symmetric random variables with logarithmically concave tails},
url = {http://eudml.org/doc/272075},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Adamczak, Radosław
AU - Latała, Rafał
TI - Tail and moment estimates for chaoses generated by symmetric random variables with logarithmically concave tails
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 4
SP - 1103
EP - 1136
AB - We present two-sided estimates of moments and tails of polynomial chaoses of order at most three generated by independent symmetric random variables with log-concave tails as well as for chaoses of arbitrary order generated by independent symmetric exponential variables. The estimates involve only deterministic quantities and are optimal up to constants depending only on the order of the chaos variable.
LA - eng
KW - polynomial chaoses; tail and moment estimates; metric entropy
UR - http://eudml.org/doc/272075
ER -

References

top
  1. [1] R. Adamczak. Logarithmic Sobolev inequalities and concentration of measure for convex functions and polynomial chaoses. Bull. Pol. Acad. Sci. Math.53 (2005) 221–238. Zbl1105.60016MR2163396
  2. [2] R. Adamczak. Moment inequalities for U -statistics. Ann. Probab.34 (2006) 2288–2314. Zbl1123.60009MR2294982
  3. [3] M. A. Arcones and E. Giné. On decoupling, series expansions, and tail behavior of chaos processes, J. Theoret. Probab.6 (1993) 101–122. Zbl0785.60023MR1201060
  4. [4] A. Bonami. Étude des coefficients de Fourier des fonctions de L p ( G ) . Ann. Inst. Fourier (Grenoble) 20 (1970) 335–402. Zbl0195.42501MR283496
  5. [5] C. Borell. On the Taylor series of a Wiener polynomial. In Seminar Notes on Multiple Stochastic Integration, Polynomial Chaos and Their Integration. Case Western Reserve Univ., Cleveland, 1984. 
  6. [6] V. H. de la Peña. Decoupling and Khintchine’s inequalities for U -statistics. Ann. Probab.20 (1992) 1877–1892. Zbl0761.60014MR1188046
  7. [7] V. H. de la Peña and E. Giné. Decoupling: From Dependence to Independence. Springer, New York, 1999. Zbl0918.60021MR1666908
  8. [8] V. H. de la Peña and S. J. Montgomery-Smith. Decoupling inequalities for the tail probabilities of multivariate U -statistics. Ann. Probab.23 (1995) 806–816. Zbl0827.60014MR1334173
  9. [9] R. M. Dudley. The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Funct. Anal.1 (1967) 290–330. Zbl0188.20502MR220340
  10. [10] E. D. Gluskin and S. Kwapień. Tail and moment estimates for sums of independent random variables with logarithmically concave tails. Studia Math.114 (1995) 303–309. Zbl0834.60050MR1338834
  11. [11] L. Gross. Logarithmic Sobolev inequalities. Amer. J. Math.97 (1975) 1061–1083. Zbl0318.46049MR420249
  12. [12] S. Kwapień. Decoupling inequalities for polynomial chaos. Ann. Probab. 15 (3) (1987) 1062–1071. Zbl0622.60026MR893914
  13. [13] R. Latała. Tail and moment estimates for sums of independent random vectors with logarithmically concave tails. Studia Math.118 (1996) 301–304. Zbl0847.60031MR1388035
  14. [14] R. Latała. Tail and moment estimates for some types of chaos. Studia Math.135 (1999) 39–53. Zbl0935.60009MR1686370
  15. [15] R. Latała. Estimates of moments and tails of Gaussian chaoses. Ann. Probab.34 (2006) 2315–2331. Zbl1119.60015MR2294983
  16. [16] R. Latała and R. Łochowski. Moment and tail estimates for multidimensional chaos generated by positive random variables with logarithmically concave tails. In Stochastic Inequalities and Applications 77–92. Progr. Probab. 56. Birkhäuser, Basel, 2003. Zbl1037.60016MR2073428
  17. [17] M. Ledoux and M. Talagrand. Probability in Banach Spaces: Isoperimetry and Processes. Ergeb. Math. Grenzgeb. 23. Springer, Berlin, 1991. Zbl0748.60004MR1102015
  18. [18] R. Łochowski. Moment and tail estimates for multidimensional chaoses generated by symmetric random variables with logarithmically concave tails. In Approximation and Probability 161–176. Banach Center Publ. 72. Polish Acad. Sci., Warsaw, 2006. Zbl1105.60018MR2325744
  19. [19] E. Nelson. The free Markoff field. J. Funct. Anal.12 (1973) 211–227. Zbl0273.60079MR343816

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.