Sur les dimensions de mesures

Ai Fan

Studia Mathematica (1994)

  • Volume: 111, Issue: 1, page 1-17
  • ISSN: 0039-3223


Firstly, we introduce the lower and upper dimensions for a measure defined on a metric space. Secondly, we establish the dimension formulas and characterize the unidimensional measures which were introduced by J.-P. Kahane. Lastly, we give some applications of these to the calculus of dimensions and the multifractal analysis of certain well known measures such as Lebesgue measures on Cantor sets, Gibbs measures, Markov measures and Riesz products etc.

How to cite


Fan, Ai. "Sur les dimensions de mesures." Studia Mathematica 111.1 (1994): 1-17. <>.

author = {Fan, Ai},
journal = {Studia Mathematica},
keywords = {upper and lower dimension; dimension formulas; unidimensional; multifractal; Gibbs measure; Markov measure; Riesz product},
language = {fre},
number = {1},
pages = {1-17},
title = {Sur les dimensions de mesures},
url = {},
volume = {111},
year = {1994},

AU - Fan, Ai
TI - Sur les dimensions de mesures
JO - Studia Mathematica
PY - 1994
VL - 111
IS - 1
SP - 1
EP - 17
LA - fre
KW - upper and lower dimension; dimension formulas; unidimensional; multifractal; Gibbs measure; Markov measure; Riesz product
UR -
ER -


  1. [1] P. Assouad, Plongements Lipschitziens dans n , Bull. Soc. Math. France 111 (1983), 429-448. Zbl0597.54015
  2. [2] P. Billingsley, Ergodic Theory and Information, Wiley, 1965. Zbl0141.16702
  3. [3] R. Bohr and D. Rand, The entropy function for characteristic exponents, Phys. D 25 (1987), 387-398. Zbl0643.58006
  4. [4] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. 470, Springer, 1975. Zbl0308.28010
  5. [5] R. Coifman et G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, 1971. Zbl0224.43006
  6. [6] A. H. Fan, Décomposition de mesures et recouvrements aléatoires, Publ. d'Orsay, 1989-03. 
  7. [7] A. H. Fan, Quelques propriétés des produits de Riesz, Bull. Sci. Math. 117 (1993), 421-439. 
  8. [8] J.-P. Kahane, Some Random Series of Functions, 1st ed., Heath, 1968, 2nd ed., Cambridge Univ. Press, 1985. Zbl0192.53801
  9. [9] J.-P. Kahane, Intervalles aléatoires et décompositions des mesures, C. R. Acad. Sci. Paris 304 (1987), 551-554. Zbl0615.60012
  10. [10] J.-P. Kahane, Random multiplications, random coverings, and multiplicative chaos, in: Analysis at Urbana 1, Proc. Special Year in Modern Analysis, E. Berkson, N. T. Peck and J. Uhl (eds.), London Math. Soc. Lecture Note Ser. 137, Cambridge Univ. Press, 1989, 196-255. 
  11. [11] J.-P. Kahane, Désintégration des mesures selon la dimension, C. R. Acad. Sci. Paris 306 (1989), 107-110. 
  12. [12] J.-P. Kahane et Y. Katznelson, Décomposition des mesures selon la dimension, Colloq. Math. 58 (1990), 269-279. 
  13. [13] J.-P. Kahane et R. Salem, Sur la convolution d'une infinité de distributions de Bernoulli, ibid. 6 (1958), 193-202. Zbl0085.31803
  14. [14] J.-P. Kahane et R. Salem, Ensembles parfaits et séries trigonométriques, Hermann, Paris, 1963. Zbl0112.29304
  15. [15] D. Ruelle, Thermodynamic Formalism : the Mathematical Structures of Classical Equilibrium Statistical Mechanics, Encyclopedia Math. Appl. 5, Addison-Wesley, 1978. Zbl0401.28016
  16. [16] C. Tricot, Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982), 57-74. Zbl0483.28010
  17. [17] P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Math. 79, Springer, 1982. 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.