On the bundle convergence of double orthogonal series in noncommutative -spaces
Ferenc Móricz; Barthélemy Le Gac
Studia Mathematica (2000)
- Volume: 140, Issue: 2, page 177-190
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R. P. Agnew, On double orthogonal series, Proc. London Math. Soc. (2) 33 (1932), 420-434. Zbl0004.10702
- [2] G. Alexits, Convergence Problems of Orthogonal Series, Pergamon Press, Oxford, 1961.
- [3] J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien. (Algèbres de von Neumann), deuxième edition, Gauthier-Villars, Paris, 1969. Zbl0175.43801
- [4] G. H. Hardy, On the convergence of certain multiple series, Proc. Cambridge Philos. Soc. 19 (1916-1919), 86-95.
- [5] E. Hensz and R. Jajte, Pointwise convergence theorems in over a von Neumann algebra, Math. Z. 193 (1986), 413-429. Zbl0613.46056
- [6] E. Hensz, R. Jajte, and A. Paszkiewicz, The bundle convergence in von Neumann algebras and their -spaces, Studia Math. 120 (1996), 23-46. Zbl0856.46033
- [7] R. Jajte, Strong Limit Theorems in Non-Commutative Probability, Lecture Notes in Math. 1110, Springer, Berlin, 1985. Zbl0554.46033
- [8] R. Jajte, Strong Limit Theorems in Noncommutative -Spaces, Lecture Notes in Math. 1477, Springer, Berlin, 1991.
- [9] B. Le Gac and F. Móricz, Two-parameter SLLN in noncommutative -spaces in terms of bundle convergence, J. Funct. Anal., submitted. Zbl0980.46043
- [10] F. Móricz, On the convergence in a restricted sense of multiple series, Anal. Math. 5 (1979), 135-147. Zbl0428.40001
- [11] F. Móricz, Some remarks on the notion of regular convergence of multiple series, Acta Math. Acad. Sci. Hungar. 41 (1983), 161-168. Zbl0525.40002